Neuroimmunology is emerging as a pivotal field,shedding light on the intricate dialogues between the central nervous system(CNS)and the immune system.This exploration is particularly significant in understanding micro...Neuroimmunology is emerging as a pivotal field,shedding light on the intricate dialogues between the central nervous system(CNS)and the immune system.This exploration is particularly significant in understanding microglia,the CNS’s innate immune cells,beyond the conventional conflation of“neuroinflammation”and“microglial activation.”This conflation has clouded the true complexity of these processes,potentially stalling scientific progress and the development of new therapies.We challenge the long-standing perspectives that have oversimplified these interactions,advocating for a deeper exploration of the dynamic relationship between neuroinflammation and microglial activation.By dissecting specific molecular pathways,we aim to illuminate their elaborate roles in neuroinflammatory responses,especially in the context of Alzheimer’s disease(AD).Here,neuroinflammation is not merely a passive observer or a direct antagonist but a complex agent in the disease’s progression.This article calls for a significant paradigm shift towards an integrative,multi-omics approach to neuroimmunology.Adopting such a comprehensive framework is crucial for advancing our understanding of neuroinflammatory conditions and paving the way for targeted therapeutic strategies for brain diseases.展开更多
In 1872, George Huntington presented his essay “On Chorea” to the Meigs and Mason Academy of Medicine and, in doing so, detailed a disease that would later bear his name. Huntington's disease(HD) is a genetic, n...In 1872, George Huntington presented his essay “On Chorea” to the Meigs and Mason Academy of Medicine and, in doing so, detailed a disease that would later bear his name. Huntington's disease(HD) is a genetic, neurodegenerative disease that manifests as the loss of motor control,cognitive impairment,and mood and psychiatric changes in paents.展开更多
Traumatic spinal cord injury(SCI)is a devastating exogenous injury with long-lasting consequences and a leading cause of death and disability worldwide.Advances in assistive technology,rehabilitative interventions,and...Traumatic spinal cord injury(SCI)is a devastating exogenous injury with long-lasting consequences and a leading cause of death and disability worldwide.Advances in assistive technology,rehabilitative interventions,and the ability to identify and intervene in secondary conditions have significantly increased the long-term survival rate of SCI patients,with some people even living well into their seventh or eighth decade.These survival changes have led neurotrauma researchers to examine how SCI interacts with brain aging.Public health and epidemiological data showed that patients with long-term SCI can have a lower life expectancy and quality of life,along with a higher risk of comorbidities and complications.展开更多
Introduction to human endogenous retrovirus type-W(HERV-W): Genomic inheritance from the past includes retroviral sequences that have been stably incorporated into our genomes and account for up to 8% of human DNA.
Multiple sclerosis(MS),which is characterized by inflammatory demyelination in the central nervous system(CNS),is the most common neurological disease in the young adult population.Experimental autoimmune encephalomye...Multiple sclerosis(MS),which is characterized by inflammatory demyelination in the central nervous system(CNS),is the most common neurological disease in the young adult population.Experimental autoimmune encephalomyelitis(EAE),an animal model of MS,is often used in preclinical studies.Accumulating data indicate that in addition to immune cells such as T cells and dendritic cells,CNS resident microglia and astrocytes play important roles in demyelinating neuroinflammation(Healy et al.,2022).In particular,microglia are key immune-competent cells that can respond to environmental changes.Conditional depletion of transforming growth factor-β-activated kinase 1,a mitogen-associated protein kinase kinase kinase,in microglia is reported to reduce CNS inflammation and diminish axonal and myelin damage significantly.This suggests that elucidating the mechanisms of microglia-specific responses during pathologies may help in the development of treatments that reduce EAE/MS disease severity(Goldmann et al.,2013).展开更多
Neuroinflammation has been identified as a crucial element in several neurological disorders. Glial cells play a critical role in directing neuroinflammation, both in deleterious and beneficial ways.
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has...Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3(NLRP3). However, whether sirtuin 2-mediated pathways induce a pro-or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role i...Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016μM.The mechanism was related to binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quantum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)pathways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.展开更多
Paeonol is a bioactive phenol present in Dioscorea japonica,Paeonia suff ruticosa and Paeonia lactiflora.It is the main active ingredient in the traditional Chinese medicines Mudanpi and Xu Changqing.Clinical applicat...Paeonol is a bioactive phenol present in Dioscorea japonica,Paeonia suff ruticosa and Paeonia lactiflora.It is the main active ingredient in the traditional Chinese medicines Mudanpi and Xu Changqing.Clinical applications of paeonol are mainly focused on anti-inflammatory effects due to its ability to act as an antioxidant,a regulator of inflammatory enzyme activities,a modulator of inflammatory signaling pathways and a regulator of adhesion molecules to modulate inflammation through molecular mechanisms of action.In addition,paeonol also regulates inflammation by regulating the metabolism of gut microbes.In this review,we searched PubMed,Web of Science,ESI and other websites using“paeonol”“inflammation”“oxidative stress”“signaling pathways”and“gut microbiota”as keywords.We mainly referred to the relevant literature in the last decade and systematically summarized the studies on the anti-inflammatory effects of paeonol to provide a reference for new drug development and clinical application of paeonol.展开更多
Pre-diabetic insulin resistance is associated with sub-clinical inflammation and concomitant increase in systemic C-reactive protein(CRP)levels.Type 2 diabetes mellitus(T2DM)patients register even higher chronic level...Pre-diabetic insulin resistance is associated with sub-clinical inflammation and concomitant increase in systemic C-reactive protein(CRP)levels.Type 2 diabetes mellitus(T2DM)patients register even higher chronic levels of inflammation,with excess circulating CRP originating from both typical hepatic synthesis,and also visceral white adipose tissue.展开更多
Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,...Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress,particularly its involvement in senescence-induced inflammation,remain insufficiently elucidated.In this study,we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury(SCI).Lysine demethylase 6A(Kdm6a),commonly known as UTX,emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells(SCMECs).Upregulation of UTX induces senescence in SCMECs,leading to an amplified release of proinflammatory factors,specifically the senescenceassociated secretory phenotype(SASP)components,thereby modulating the inflammatory microenvironment.Conversely,the deletion of UTX in endothelial cells shields SCMECs against senescence,mitigates the release of proinflammatory SASP factors,and promotes neurological functional recovery after SCI.UTX forms an epigenetic regulatory axis by binding to calponin 1(CNN1),orchestrating trauma-induced SCMECs senescence and SASP secretion,thereby influencing neuroinflammation and neurological functional repair.Furthermore,local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion,reinstating a local regenerative microenvironment and enhancing functional repair after SCI.In conclusion,targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion,alleviate neuroinflammation,and provide a novel treatment strategy for SCI repair.展开更多
In this study, the effect of prophylactic anti inflammation on the development of smoke induced emphysema was investigated. Young male guinea pigs aged 1.5 - 2 months (weighing 198.3±26.9 g) were randomly divi...In this study, the effect of prophylactic anti inflammation on the development of smoke induced emphysema was investigated. Young male guinea pigs aged 1.5 - 2 months (weighing 198.3±26.9 g) were randomly divided into 4 groups: group A (cigarette smoke exposure only), group B (cigarette smoke exposure plus pentoxifylline rich (PTX, 10 mg/d) forage feeding), group C (cigarette smoke exposure plus intermittent cortical steroid injection (Triamcinolone acetonide, 3 mg, im, every three weeks) and control group (group D: animals with sham smoke exposure, raised under the same conditions). Animals in group A, B and C were exposed to smoke of cigarettes for 1 to 1.5 h twice a day, 5 days a week. All animals were killed at the 16th week and followed by morphometrical analysis of the midsagittal sectioned lung slices. Smoke exposure of 16 weeks resulted in visible emphysematous development in Group A but not in Group B and C. It was evidenced by the indicator of air space size, mean linear intercept (L m): 120.6±16.0 μm in Group A; 89.8±9.2 μm in Group B and 102.4±17.7 μm in Group C. The average L m in either group B or group C was shorter than that in Group A (ANOVA and Newman Keuls test, F=8.80, P =0.0002) but comparable to that (94.8±13.2 μm) in group D ( P >0.05). It is concluded that long term prophylactic anti inflammation inhibits pulmonary emphysema induced by cigarette smoking in the guinea pigs.展开更多
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa...Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.展开更多
BACKGROUND The modified Xiaoyao San(MXS)formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer,which has the effect of preventing postoperative recurrence ...BACKGROUND The modified Xiaoyao San(MXS)formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer,which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival.However,the molecular mechanisms underlying that remain unclear.AIM To investigate the role and mechanisms of MXS in ameliorating hepatic injury,steatosis and inflammation.METHODS A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis(NASH)model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes.Liver tissues were collected for western blotting and immunohisto chemistry(IHC)assays.Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining.The serum samples were collected for biochemical assays and NMR-based metabonomics analysis.The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH.RESULTS MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress.The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation,inflammation and hepatic fibrosis in the pathogenesis of NASH.The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis.Mechanistically,we found that MXS protected against NASH by attenuating the sex hormone-related metabolism,especially the metabolism of male hormones.CONCLUSION MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones.Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH.展开更多
Myeloproliferative neoplasms(MPN)are a group of diseases characterized by the clonal proliferation of hematopoietic progenitor or stem cells.They are clinically classifiable into four main diseases:chronic myeloid leu...Myeloproliferative neoplasms(MPN)are a group of diseases characterized by the clonal proliferation of hematopoietic progenitor or stem cells.They are clinically classifiable into four main diseases:chronic myeloid leukemia,essential thrombocythemia,polycythemia vera,and primary myelofibrosis.These pathologies are closely related to cardio-and cerebrovascular diseases due to the increased risk of arterial thrombosis,the most common underlying cause of acute myocardial infarction.Recent evidence shows that the classical Virchow triad(hypercoagulability,blood stasis,endothelial injury)might offer an explanation for such association.Indeed,patients with MPN might have a higher number and more reactive circulating platelets and leukocytes,a tendency toward blood stasis because of a high number of circulating red blood cells,endothelial injury or overactivation as a consequence of sustained inflammation caused by the neoplastic clonal cell.These abnormal cancer cells,especially when associated with the JAK2V617F mutation,tend to proliferate and secrete several inflammatory cytokines.This sustains a pro-inflammatory state throughout the body.The direct consequence is the induction of a pro-thrombotic state that acts as a determinant in favoring both venous and arterial thrombus formation.Clinically,MPN patients need to be carefully evaluated to be treated not only with cytoreductive treatments but also with cardiovascular protective strategies.展开更多
Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical sig...Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical signs like redness,swelling,pain,and increased body temperature.Immune cells,notably neutrophils and macrophages,play key roles in orchestrating this response.The delicate balance between proinflammatory and anti-inflammatory mediators,including cytokines and chemokines,regulates the inflammatory cascade.While acute inflammation is crucial for tissue repair,chronic inflammation may indicate an imbalance,contributing to conditions like autoimmune diseases.Understanding these mechanisms is vital for developing therapeutic strategies and managing chronic diseases.展开更多
Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory ...Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis.Unfortunately,due to the lack of effective therapeutic targets,the prognosis of patients with GICs is still unsatisfactory.Interestingly,it is found that six transmembrane epithelial antigens of the prostate(STEAPs),a group of metal reductases,are significantly associated with the progression of malignancies,playing a crucial role in systemic metabolic homeostasis and inflammatory responses.The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress,responding to inflammatory reactions.Under the imbalance status of abnormal oxidative stress,STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process.This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms,with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.展开更多
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r...We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.展开更多
Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review ex...Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review examines the interaction between the inflammatory and coagulation cascades, as well as the role of endogenous anticoagulants in regulating this interaction and dampening the activity of both pathways. Clinical trials attempting to improve outcomes in patients with severe sepsis by inhibiting thrombin generation with heparin and or endogenous anticoagulants are reviewed. In general, these trials have failed to demonstrate that anticoagulant therapy is associated with improvement in mortality or morbidity. While it is possible that selective patients who are severelyill with a high expected mortality may be shown to benefit from such therapy, at the present time none of these anticoagulants are neither approved nor can they be recommended for the treatment of sepsis.展开更多
基金funded by Portuguese funds through FCT——Funda??o para a Ciência e a Tecnologia/Ministério da Ciência,Tecnologia e Ensino Superior in the framework of the project PTDC/MEDNEU/1677/2021(to JBR)。
文摘Neuroimmunology is emerging as a pivotal field,shedding light on the intricate dialogues between the central nervous system(CNS)and the immune system.This exploration is particularly significant in understanding microglia,the CNS’s innate immune cells,beyond the conventional conflation of“neuroinflammation”and“microglial activation.”This conflation has clouded the true complexity of these processes,potentially stalling scientific progress and the development of new therapies.We challenge the long-standing perspectives that have oversimplified these interactions,advocating for a deeper exploration of the dynamic relationship between neuroinflammation and microglial activation.By dissecting specific molecular pathways,we aim to illuminate their elaborate roles in neuroinflammatory responses,especially in the context of Alzheimer’s disease(AD).Here,neuroinflammation is not merely a passive observer or a direct antagonist but a complex agent in the disease’s progression.This article calls for a significant paradigm shift towards an integrative,multi-omics approach to neuroimmunology.Adopting such a comprehensive framework is crucial for advancing our understanding of neuroinflammatory conditions and paving the way for targeted therapeutic strategies for brain diseases.
文摘In 1872, George Huntington presented his essay “On Chorea” to the Meigs and Mason Academy of Medicine and, in doing so, detailed a disease that would later bear his name. Huntington's disease(HD) is a genetic, neurodegenerative disease that manifests as the loss of motor control,cognitive impairment,and mood and psychiatric changes in paents.
基金supported by NIH funding(RF1NS110637,2RF1NS094527,R01NS110635)to JW.
文摘Traumatic spinal cord injury(SCI)is a devastating exogenous injury with long-lasting consequences and a leading cause of death and disability worldwide.Advances in assistive technology,rehabilitative interventions,and the ability to identify and intervene in secondary conditions have significantly increased the long-term survival rate of SCI patients,with some people even living well into their seventh or eighth decade.These survival changes have led neurotrauma researchers to examine how SCI interacts with brain aging.Public health and epidemiological data showed that patients with long-term SCI can have a lower life expectancy and quality of life,along with a higher risk of comorbidities and complications.
基金supported by the Christiane and Claudia Hempel Foundation for Regenerative Medicineby the James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung(to PK)。
文摘Introduction to human endogenous retrovirus type-W(HERV-W): Genomic inheritance from the past includes retroviral sequences that have been stably incorporated into our genomes and account for up to 8% of human DNA.
基金supported by Japan Society for the Promotion of Science(JSPS)KAKENHI Grants-in-Aid for Scientific Research(JP21K09688 and JP24K12795 to XGJP22K09804 to CHJP19KK0229,JP21H02819,JP21K18279,and JP24H00583 to TH),Shiseido Female Researcher Science Grant(to XG)and the Takeda Science Foundation(to TH).
文摘Multiple sclerosis(MS),which is characterized by inflammatory demyelination in the central nervous system(CNS),is the most common neurological disease in the young adult population.Experimental autoimmune encephalomyelitis(EAE),an animal model of MS,is often used in preclinical studies.Accumulating data indicate that in addition to immune cells such as T cells and dendritic cells,CNS resident microglia and astrocytes play important roles in demyelinating neuroinflammation(Healy et al.,2022).In particular,microglia are key immune-competent cells that can respond to environmental changes.Conditional depletion of transforming growth factor-β-activated kinase 1,a mitogen-associated protein kinase kinase kinase,in microglia is reported to reduce CNS inflammation and diminish axonal and myelin damage significantly.This suggests that elucidating the mechanisms of microglia-specific responses during pathologies may help in the development of treatments that reduce EAE/MS disease severity(Goldmann et al.,2013).
基金supported by a grant from the Basic Science Research Program through the National Research Foundation(NRF),which is funded by the Korean government(MSIP)(NRF-2020M3E5D9079764)(to KS)。
文摘Neuroinflammation has been identified as a crucial element in several neurological disorders. Glial cells play a critical role in directing neuroinflammation, both in deleterious and beneficial ways.
基金funded by FEDER/Ministerio de Ciencia,Innovación y Universidades Agencia Estatal de Investigación/Project(PID2020-119729GB-100,REF/AEI/10.13039/501100011033)(to EP)a predoctoral fellowship from the Spanish Ministry of Universities(FPU)and Amigos de la Universidad de Navarra(to NSS)“Programa MRR Investigo 2023”(to MGB and MMD)。
文摘Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3(NLRP3). However, whether sirtuin 2-mediated pathways induce a pro-or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
基金supported by National Natural Science Foundation of China(Grant Nos.:81891010/81891011,81725023,82003614,82173950,31770192,32070187,32161133003 and 82003681)China Postdoctoral Science Foundation(Grant No:2022T150029).
文摘Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016μM.The mechanism was related to binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quantum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)pathways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.
文摘Paeonol is a bioactive phenol present in Dioscorea japonica,Paeonia suff ruticosa and Paeonia lactiflora.It is the main active ingredient in the traditional Chinese medicines Mudanpi and Xu Changqing.Clinical applications of paeonol are mainly focused on anti-inflammatory effects due to its ability to act as an antioxidant,a regulator of inflammatory enzyme activities,a modulator of inflammatory signaling pathways and a regulator of adhesion molecules to modulate inflammation through molecular mechanisms of action.In addition,paeonol also regulates inflammation by regulating the metabolism of gut microbes.In this review,we searched PubMed,Web of Science,ESI and other websites using“paeonol”“inflammation”“oxidative stress”“signaling pathways”and“gut microbiota”as keywords.We mainly referred to the relevant literature in the last decade and systematically summarized the studies on the anti-inflammatory effects of paeonol to provide a reference for new drug development and clinical application of paeonol.
文摘Pre-diabetic insulin resistance is associated with sub-clinical inflammation and concomitant increase in systemic C-reactive protein(CRP)levels.Type 2 diabetes mellitus(T2DM)patients register even higher chronic levels of inflammation,with excess circulating CRP originating from both typical hepatic synthesis,and also visceral white adipose tissue.
基金funded by National Natural Science Foundation of China(grant 82030071 and 82272495)Natural Science Foundation of Hunan Province(grant 2020JJ5930 and 2020JJ4874)the Science and Technology Major Project of Changsha(No.kh2103008).
文摘Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress,particularly its involvement in senescence-induced inflammation,remain insufficiently elucidated.In this study,we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury(SCI).Lysine demethylase 6A(Kdm6a),commonly known as UTX,emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells(SCMECs).Upregulation of UTX induces senescence in SCMECs,leading to an amplified release of proinflammatory factors,specifically the senescenceassociated secretory phenotype(SASP)components,thereby modulating the inflammatory microenvironment.Conversely,the deletion of UTX in endothelial cells shields SCMECs against senescence,mitigates the release of proinflammatory SASP factors,and promotes neurological functional recovery after SCI.UTX forms an epigenetic regulatory axis by binding to calponin 1(CNN1),orchestrating trauma-induced SCMECs senescence and SASP secretion,thereby influencing neuroinflammation and neurological functional repair.Furthermore,local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion,reinstating a local regenerative microenvironment and enhancing functional repair after SCI.In conclusion,targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion,alleviate neuroinflammation,and provide a novel treatment strategy for SCI repair.
文摘In this study, the effect of prophylactic anti inflammation on the development of smoke induced emphysema was investigated. Young male guinea pigs aged 1.5 - 2 months (weighing 198.3±26.9 g) were randomly divided into 4 groups: group A (cigarette smoke exposure only), group B (cigarette smoke exposure plus pentoxifylline rich (PTX, 10 mg/d) forage feeding), group C (cigarette smoke exposure plus intermittent cortical steroid injection (Triamcinolone acetonide, 3 mg, im, every three weeks) and control group (group D: animals with sham smoke exposure, raised under the same conditions). Animals in group A, B and C were exposed to smoke of cigarettes for 1 to 1.5 h twice a day, 5 days a week. All animals were killed at the 16th week and followed by morphometrical analysis of the midsagittal sectioned lung slices. Smoke exposure of 16 weeks resulted in visible emphysematous development in Group A but not in Group B and C. It was evidenced by the indicator of air space size, mean linear intercept (L m): 120.6±16.0 μm in Group A; 89.8±9.2 μm in Group B and 102.4±17.7 μm in Group C. The average L m in either group B or group C was shorter than that in Group A (ANOVA and Newman Keuls test, F=8.80, P =0.0002) but comparable to that (94.8±13.2 μm) in group D ( P >0.05). It is concluded that long term prophylactic anti inflammation inhibits pulmonary emphysema induced by cigarette smoking in the guinea pigs.
基金This work was supported financially by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced program,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.
基金Supported by Chongqing Fundamental Research Funds,No.jbky20210001Key Programs of Technological Innovation and Application Development of Chongqing,China,No.cstc2021jscx-dxwtBX0016+2 种基金Natural Science Foundation of Chongqing,No.cstc2021jcyjmsxmX0793Science and Technology Project in Social Livelihood of Bishan District,Chongqing,China,No.BSKJ0078 and No.BSKJ0075Performance Incentive-oriented Project of Chongqing,No.jxjl20220007。
文摘BACKGROUND The modified Xiaoyao San(MXS)formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer,which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival.However,the molecular mechanisms underlying that remain unclear.AIM To investigate the role and mechanisms of MXS in ameliorating hepatic injury,steatosis and inflammation.METHODS A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis(NASH)model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes.Liver tissues were collected for western blotting and immunohisto chemistry(IHC)assays.Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining.The serum samples were collected for biochemical assays and NMR-based metabonomics analysis.The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH.RESULTS MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress.The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation,inflammation and hepatic fibrosis in the pathogenesis of NASH.The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis.Mechanistically,we found that MXS protected against NASH by attenuating the sex hormone-related metabolism,especially the metabolism of male hormones.CONCLUSION MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones.Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH.
文摘Myeloproliferative neoplasms(MPN)are a group of diseases characterized by the clonal proliferation of hematopoietic progenitor or stem cells.They are clinically classifiable into four main diseases:chronic myeloid leukemia,essential thrombocythemia,polycythemia vera,and primary myelofibrosis.These pathologies are closely related to cardio-and cerebrovascular diseases due to the increased risk of arterial thrombosis,the most common underlying cause of acute myocardial infarction.Recent evidence shows that the classical Virchow triad(hypercoagulability,blood stasis,endothelial injury)might offer an explanation for such association.Indeed,patients with MPN might have a higher number and more reactive circulating platelets and leukocytes,a tendency toward blood stasis because of a high number of circulating red blood cells,endothelial injury or overactivation as a consequence of sustained inflammation caused by the neoplastic clonal cell.These abnormal cancer cells,especially when associated with the JAK2V617F mutation,tend to proliferate and secrete several inflammatory cytokines.This sustains a pro-inflammatory state throughout the body.The direct consequence is the induction of a pro-thrombotic state that acts as a determinant in favoring both venous and arterial thrombus formation.Clinically,MPN patients need to be carefully evaluated to be treated not only with cytoreductive treatments but also with cardiovascular protective strategies.
文摘Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical signs like redness,swelling,pain,and increased body temperature.Immune cells,notably neutrophils and macrophages,play key roles in orchestrating this response.The delicate balance between proinflammatory and anti-inflammatory mediators,including cytokines and chemokines,regulates the inflammatory cascade.While acute inflammation is crucial for tissue repair,chronic inflammation may indicate an imbalance,contributing to conditions like autoimmune diseases.Understanding these mechanisms is vital for developing therapeutic strategies and managing chronic diseases.
基金the National Natural Science Foundation of China,No.82273457the Natural Science Foundation of Guangdong Province,No.2021A1515012180,2023A1515012762 and No.2019A1515010962+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis.Unfortunately,due to the lack of effective therapeutic targets,the prognosis of patients with GICs is still unsatisfactory.Interestingly,it is found that six transmembrane epithelial antigens of the prostate(STEAPs),a group of metal reductases,are significantly associated with the progression of malignancies,playing a crucial role in systemic metabolic homeostasis and inflammatory responses.The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress,responding to inflammatory reactions.Under the imbalance status of abnormal oxidative stress,STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process.This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms,with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
基金supported by the National Natural Science Foundation of China,Nos.82271327(to ZW),82072535(to ZW),81873768(to ZW),and 82001253(to TL).
文摘We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.
文摘Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review examines the interaction between the inflammatory and coagulation cascades, as well as the role of endogenous anticoagulants in regulating this interaction and dampening the activity of both pathways. Clinical trials attempting to improve outcomes in patients with severe sepsis by inhibiting thrombin generation with heparin and or endogenous anticoagulants are reviewed. In general, these trials have failed to demonstrate that anticoagulant therapy is associated with improvement in mortality or morbidity. While it is possible that selective patients who are severelyill with a high expected mortality may be shown to benefit from such therapy, at the present time none of these anticoagulants are neither approved nor can they be recommended for the treatment of sepsis.