Fungi play a vital role in the management of soil environment. Although various fungal communities are found in soil, it is difficult to determine the fungal community structure in soil. In this study, we conducted a ...Fungi play a vital role in the management of soil environment. Although various fungal communities are found in soil, it is difficult to determine the fungal community structure in soil. In this study, we conducted a comprehensive survey of fungal communities in Japanese Prunus mume orchard soil from 2010 to 2012 growing seasons using next-generation sequencing technology. Fungal DNA was directly extracted from the soil samples and the internal transcribed spacer 1 region was amplified by PCR and sequenced. We identified 34,826 fungal clone sequences from the soil samples. The fungal clones were sorted into 2132 operational taxonomic units and a majority of the discriminated clone sequences were classified as Ascomycota and Basidiomycota. The number of fungal species belonging to Ascomycota showed increases in June in the three growing seasons. That belonging to Glomeromycota showed increases in August in the three growing seasons. As Ascomycota fungi are wood decomposers and saprotrophs, the results suggested that the number of plant pathogenic fungi increased in Japanese P. mume orchard soil in June. These findings show for the first time the annual and seasonal fungal community structures in Japanese P. mume orchard soil, and are expected to provide valuable clues for improvement when planting new P. mume trees in Japanese orchards.展开更多
The Chinese Anti-Japanese War was a battle between human rights protections and abuses, between civilization and brutality, and between justice and evil. During the war, the human rights of Chinese people were complet...The Chinese Anti-Japanese War was a battle between human rights protections and abuses, between civilization and brutality, and between justice and evil. During the war, the human rights of Chinese people were completely violated by the Japanese aggressors, causing an unprecedented human rights catastrophe. At the same time, Chinese people vigorously resisted the aggression in order to defend the national survival right and safeguard the human peace against war. The history of human rights’ victory over human rights abuses tells us: aggressive wars are the most serious violations of human rights. We must protect people’s right to peace for every country in the world. In order to avoid violations of human rights by war once again, we must safeguard the international postwar order and prevent the revival of fascism, whose essences are contempt for and trample on human rights. Therefore we have to respect and protect human rights and defend both the collective rights of every nation and the individual rights of every person in the world.展开更多
Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin an...Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit(NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 μg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine(approval No. BUCM-3-2016040201-2003) in April 2016.展开更多
Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to subs...Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.展开更多
文摘Fungi play a vital role in the management of soil environment. Although various fungal communities are found in soil, it is difficult to determine the fungal community structure in soil. In this study, we conducted a comprehensive survey of fungal communities in Japanese Prunus mume orchard soil from 2010 to 2012 growing seasons using next-generation sequencing technology. Fungal DNA was directly extracted from the soil samples and the internal transcribed spacer 1 region was amplified by PCR and sequenced. We identified 34,826 fungal clone sequences from the soil samples. The fungal clones were sorted into 2132 operational taxonomic units and a majority of the discriminated clone sequences were classified as Ascomycota and Basidiomycota. The number of fungal species belonging to Ascomycota showed increases in June in the three growing seasons. That belonging to Glomeromycota showed increases in August in the three growing seasons. As Ascomycota fungi are wood decomposers and saprotrophs, the results suggested that the number of plant pathogenic fungi increased in Japanese P. mume orchard soil in June. These findings show for the first time the annual and seasonal fungal community structures in Japanese P. mume orchard soil, and are expected to provide valuable clues for improvement when planting new P. mume trees in Japanese orchards.
文摘The Chinese Anti-Japanese War was a battle between human rights protections and abuses, between civilization and brutality, and between justice and evil. During the war, the human rights of Chinese people were completely violated by the Japanese aggressors, causing an unprecedented human rights catastrophe. At the same time, Chinese people vigorously resisted the aggression in order to defend the national survival right and safeguard the human peace against war. The history of human rights’ victory over human rights abuses tells us: aggressive wars are the most serious violations of human rights. We must protect people’s right to peace for every country in the world. In order to avoid violations of human rights by war once again, we must safeguard the international postwar order and prevent the revival of fascism, whose essences are contempt for and trample on human rights. Therefore we have to respect and protect human rights and defend both the collective rights of every nation and the individual rights of every person in the world.
基金supported by the National Natural Science Foundation of China,No.81430102(to QGW)
文摘Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit(NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 μg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine(approval No. BUCM-3-2016040201-2003) in April 2016.
基金supported by National Natural Science Foundation of China(Grant No.50908008)National Hi-tech Research and Development Program of China(863Program,Grant No.2009AA11Z216)
文摘Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.