In this paper, the buoyancy, kinetic properties and stability of air floated structures have been studied by theoretical and experimental methods. The equations for calculation of the buoyancy of the air floated buoy ...In this paper, the buoyancy, kinetic properties and stability of air floated structures have been studied by theoretical and experimental methods. The equations for calculation of the buoyancy of the air floated buoy are derived according to the Boyler law and the equilibrium equations of the air floated structure are established. Through simplification of the air floated structure as a single freedom rigid body and spring system, the natural period of heaving and some kinetic properties are discussed. In the stability analysis, the formulas for calculation of the meta centric height are presented. The theoretical results are in good agreement with the data observed from the model test and prototype test. The air buoyancy decrease coefficient presented in this paper has a large influence on the floating state, stability and dynamic properties of the air floated structure. The stability of the air floated structure can also be judged by the parameter of meta centric height, and calculations show that the air floated structure is less stable than the conventional float.展开更多
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and instal...Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.展开更多
The intact stability and damage stability of a model of an anemometer tower with buoyancy tank foundation are computed by the finite element software MOSES in this paper. The natural period of the anemometer tower is ...The intact stability and damage stability of a model of an anemometer tower with buoyancy tank foundation are computed by the finite element software MOSES in this paper. The natural period of the anemometer tower is discussed through frequency domain analysis. The influence of a single factor, such as towing point position, wave height, wave direction and wave period, on towing stability is discussed through time domain analysis. At the same time, the towing stability under the condition of various combinations of many factors is analyzed based on the measured data of the target area. Computer simulation results show that the intact stability is preferable and the damage stability is sufficient under the condition of plenty of subdivisions. Within the scope of the buoyancy tank foundation,the higher the towing point position is, the better the stability is. Wave height has a great impact on the motion amplitude of buoyancy tank foundation, but the effect on the acceleration is not obvious; wave period has a great impact on the acceleration, while the effect on the motion amplitude is not obvious; following-waves towing is more conducive to safety than atry.展开更多
The aim of this paper is to present the main results arisen from the joint efforts of the public-private partnership in being between CCII (Centro Cultura Innovativa d'Impresa) of University of Salento and Apphia s...The aim of this paper is to present the main results arisen from the joint efforts of the public-private partnership in being between CCII (Centro Cultura Innovativa d'Impresa) of University of Salento and Apphia s.r.l.. This paper will focus on the results of the core of the OBSS (on board stability system) module that, starting from the exact 3D geometry of a ship hull, described by a discrete model in a standard format, the distribution of all weights onboard and the data acquired by the system, calculates ship floating conditions (in draught, heel and trim). The proposed approach is based on geometry meshes represented by an universally accepted file format (named OBJ) first developed by Wavefront Technologies. Demonstration of the validity of the results is done by the authors using as hull model a simple rectangular box.展开更多
The basis, process and results of the demonstration of the main dimensions of a 75000t floating production and storage vessel are discussed in this paper. A simple but reliable orthogonal design method is applied in t...The basis, process and results of the demonstration of the main dimensions of a 75000t floating production and storage vessel are discussed in this paper. A simple but reliable orthogonal design method is applied in the main dimension optimization. The ideas of gradual approximation and feedback from various aspects are put into effect. During the demonstration, in order to make the model tally with the actual situation, the draft design is closely related to the computational analysis, so that the demonstration model can be verified at any time; the handling of the overall system is closely related to the research of each item, which is beneficial not only to the mastery of various regularities, but also to the balance of decisions. Finally, according to the computational results and the regularities obtained from analysis, the main dimensions are determined.展开更多
The closed-loop stability issue of finite-precision realizations was investigated for digital control-lers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resultingfrom...The closed-loop stability issue of finite-precision realizations was investigated for digital control-lers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resultingfrom using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.展开更多
The viewpoint of a river is changing as people regard the river as water-friendly space where they can enjoy and share the space beyond the simple purpose of flood control alongside the improving social level. The flo...The viewpoint of a river is changing as people regard the river as water-friendly space where they can enjoy and share the space beyond the simple purpose of flood control alongside the improving social level. The floating islands installation was planned featuring three islands. The river’s flow and channel stability could be changed when new structures are built in a river. Hence an analysis of the hydraulic characteristic changes should need. The hydraulic model experiment in this study sought to review the impacts of the floating islands installation on the safety of flood control and stability of river channel. This study analyzed the hydraulic features affecting the surrounding stability when installing floating islands and proposed stable floating islands layout in terms of hydraulics based on the experiment results.展开更多
The objective of this study is to develop a procedure to analyze the motions of a floating pier comprised of several pontoons that are modeled as rigid bodies and connected to each other by flexible and rigid connecto...The objective of this study is to develop a procedure to analyze the motions of a floating pier comprised of several pontoons that are modeled as rigid bodies and connected to each other by flexible and rigid connectors.Recently,the use of floating piers has increased because of their advantages,such as faster and higher-quality construction,seismic force isolation for a full-scale mooring system,low dependence on local soil conditions and tides,ability to relocate or reconfigure the pier modules during the operation period and 75-100 years of repair-free service.A floating pier consists of a pier,access bridge,mooring system and fender system,each of which comes in many variations to suit different usages and construction considerations.The typical loads used in the design of these piers are dead loads,live loads,mooring loads,fender loads and environmental loads induced by wind,currents and waves.For numerical simulation,three types of piers are used:passenger piers,light-cargo piers and semi-heavy-cargo piers.The selected piers consist of several large pontoons joined by pivots and have a pile-based mooring system.These piers are modeled by SAP2000software as two-dimensional frames that are linked together.As the first step,each type of pier is subjected to loading,and its general behavior is assessed.According to this behavior,the major load combinations are described for the design of piers and analyzed to determine the behavior of the modules.Lastly,according to the analysis results and the safe use and stability considerations,such as the maximum draft and longitudinal gradient,the dimensions of each module in each pier type are presented.展开更多
This study presents an improved compound control algorithm that substantially enhances the antidisturbance performance of a gear-drive gyro-stabilized platform with a floating gear tension device.The tension device ca...This study presents an improved compound control algorithm that substantially enhances the antidisturbance performance of a gear-drive gyro-stabilized platform with a floating gear tension device.The tension device can provide a self-adjustable preload to eliminate the gap in the meshing process.However,the weaker gear support stiffness and more complex meshing friction are also induced by the tension device,which deteriorates the control accuracy and the ability to keep the aim point of the optical sensors isolated from the platform motion.The modeling and compensation of the induced complex nonlinearities are technically challenging,especially when base motion exists.The aim of this research is to cope with the unmeasured disturbances as well as the uncertainties caused by the base lateral motion.First,the structural properties of the gear transmission and the friction-generating mechanism are analyzed,which classify the disturbances into two categories:Time-invariant and time-varying parts.Then,a proportional-integral controller is designed to eliminate the steady-state error caused by the time-invariant disturbance.A proportional multiple-integral-based state augmented Kalman filter is proposed to estimate and compensate for the time-varying disturbance that can be approximated as a polynomial function.The effectiveness of the proposed compound algorithm is demonstrated by comparative experiments on a gear-drive pointing system with a floating gear tension device,which shows a maximum 76%improvement in stabilization precision.展开更多
文摘In this paper, the buoyancy, kinetic properties and stability of air floated structures have been studied by theoretical and experimental methods. The equations for calculation of the buoyancy of the air floated buoy are derived according to the Boyler law and the equilibrium equations of the air floated structure are established. Through simplification of the air floated structure as a single freedom rigid body and spring system, the natural period of heaving and some kinetic properties are discussed. In the stability analysis, the formulas for calculation of the meta centric height are presented. The theoretical results are in good agreement with the data observed from the model test and prototype test. The air buoyancy decrease coefficient presented in this paper has a large influence on the floating state, stability and dynamic properties of the air floated structure. The stability of the air floated structure can also be judged by the parameter of meta centric height, and calculations show that the air floated structure is less stable than the conventional float.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.52006148 and 51976131)the Capacity Building Project of Local Institutions of Shanghai“Action Plan for Scientific and Technological”(Grant Nos.19060502200).
文摘Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA051705)International Science and Technology Cooperation Program of China(No.2012DFA70490)+1 种基金National Natural Science Foundation of China(No.51109160)Tianjin Natural Science Foundation(No.13JCYBJC19100)
文摘The intact stability and damage stability of a model of an anemometer tower with buoyancy tank foundation are computed by the finite element software MOSES in this paper. The natural period of the anemometer tower is discussed through frequency domain analysis. The influence of a single factor, such as towing point position, wave height, wave direction and wave period, on towing stability is discussed through time domain analysis. At the same time, the towing stability under the condition of various combinations of many factors is analyzed based on the measured data of the target area. Computer simulation results show that the intact stability is preferable and the damage stability is sufficient under the condition of plenty of subdivisions. Within the scope of the buoyancy tank foundation,the higher the towing point position is, the better the stability is. Wave height has a great impact on the motion amplitude of buoyancy tank foundation, but the effect on the acceleration is not obvious; wave period has a great impact on the acceleration, while the effect on the motion amplitude is not obvious; following-waves towing is more conducive to safety than atry.
文摘The aim of this paper is to present the main results arisen from the joint efforts of the public-private partnership in being between CCII (Centro Cultura Innovativa d'Impresa) of University of Salento and Apphia s.r.l.. This paper will focus on the results of the core of the OBSS (on board stability system) module that, starting from the exact 3D geometry of a ship hull, described by a discrete model in a standard format, the distribution of all weights onboard and the data acquired by the system, calculates ship floating conditions (in draught, heel and trim). The proposed approach is based on geometry meshes represented by an universally accepted file format (named OBJ) first developed by Wavefront Technologies. Demonstration of the validity of the results is done by the authors using as hull model a simple rectangular box.
文摘The basis, process and results of the demonstration of the main dimensions of a 75000t floating production and storage vessel are discussed in this paper. A simple but reliable orthogonal design method is applied in the main dimension optimization. The ideas of gradual approximation and feedback from various aspects are put into effect. During the demonstration, in order to make the model tally with the actual situation, the draft design is closely related to the computational analysis, so that the demonstration model can be verified at any time; the handling of the overall system is closely related to the research of each item, which is beneficial not only to the mastery of various regularities, but also to the balance of decisions. Finally, according to the computational results and the regularities obtained from analysis, the main dimensions are determined.
文摘The closed-loop stability issue of finite-precision realizations was investigated for digital control-lers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resultingfrom using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.
文摘The viewpoint of a river is changing as people regard the river as water-friendly space where they can enjoy and share the space beyond the simple purpose of flood control alongside the improving social level. The floating islands installation was planned featuring three islands. The river’s flow and channel stability could be changed when new structures are built in a river. Hence an analysis of the hydraulic characteristic changes should need. The hydraulic model experiment in this study sought to review the impacts of the floating islands installation on the safety of flood control and stability of river channel. This study analyzed the hydraulic features affecting the surrounding stability when installing floating islands and proposed stable floating islands layout in terms of hydraulics based on the experiment results.
文摘The objective of this study is to develop a procedure to analyze the motions of a floating pier comprised of several pontoons that are modeled as rigid bodies and connected to each other by flexible and rigid connectors.Recently,the use of floating piers has increased because of their advantages,such as faster and higher-quality construction,seismic force isolation for a full-scale mooring system,low dependence on local soil conditions and tides,ability to relocate or reconfigure the pier modules during the operation period and 75-100 years of repair-free service.A floating pier consists of a pier,access bridge,mooring system and fender system,each of which comes in many variations to suit different usages and construction considerations.The typical loads used in the design of these piers are dead loads,live loads,mooring loads,fender loads and environmental loads induced by wind,currents and waves.For numerical simulation,three types of piers are used:passenger piers,light-cargo piers and semi-heavy-cargo piers.The selected piers consist of several large pontoons joined by pivots and have a pile-based mooring system.These piers are modeled by SAP2000software as two-dimensional frames that are linked together.As the first step,each type of pier is subjected to loading,and its general behavior is assessed.According to this behavior,the major load combinations are described for the design of piers and analyzed to determine the behavior of the modules.Lastly,according to the analysis results and the safe use and stability considerations,such as the maximum draft and longitudinal gradient,the dimensions of each module in each pier type are presented.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U19A2072)the Foundation by China Academy of Launch Vehicle Technology(Grant No.CALT201706).
文摘This study presents an improved compound control algorithm that substantially enhances the antidisturbance performance of a gear-drive gyro-stabilized platform with a floating gear tension device.The tension device can provide a self-adjustable preload to eliminate the gap in the meshing process.However,the weaker gear support stiffness and more complex meshing friction are also induced by the tension device,which deteriorates the control accuracy and the ability to keep the aim point of the optical sensors isolated from the platform motion.The modeling and compensation of the induced complex nonlinearities are technically challenging,especially when base motion exists.The aim of this research is to cope with the unmeasured disturbances as well as the uncertainties caused by the base lateral motion.First,the structural properties of the gear transmission and the friction-generating mechanism are analyzed,which classify the disturbances into two categories:Time-invariant and time-varying parts.Then,a proportional-integral controller is designed to eliminate the steady-state error caused by the time-invariant disturbance.A proportional multiple-integral-based state augmented Kalman filter is proposed to estimate and compensate for the time-varying disturbance that can be approximated as a polynomial function.The effectiveness of the proposed compound algorithm is demonstrated by comparative experiments on a gear-drive pointing system with a floating gear tension device,which shows a maximum 76%improvement in stabilization precision.