By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necess...Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necessary and sufficient conditions for solvability of the problem and an expression for general solution of the matrix equation AX=B.In addition,we also obtain the expression for the solution of a relevant optimal approximate problem.展开更多
In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Ant...In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Anti-Hermitian reflexive)matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.展开更多
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.
基金This research was supported by the NSF of China under grant number 10571047.
文摘Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necessary and sufficient conditions for solvability of the problem and an expression for general solution of the matrix equation AX=B.In addition,we also obtain the expression for the solution of a relevant optimal approximate problem.
文摘In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Anti-Hermitian reflexive)matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.