Objective:To identify unique immunogenic epitopes of Zika virus non-structural 1(NS1)antigen and produce immunoglobulin Y(IgY)for potential use in he diagnosis of of Zika virus infection.Methods:Immunogenic epitopes w...Objective:To identify unique immunogenic epitopes of Zika virus non-structural 1(NS1)antigen and produce immunoglobulin Y(IgY)for potential use in he diagnosis of of Zika virus infection.Methods:Immunogenic epitopes were identified using in silico B-cell epitope prediction.A synthetic peptide analog of the predicted epitope was used to induce antipeptide IgY production in hens which was purified using affinity chromatography.Presence of purified IgY and its binding specificity were performed by gel electrophoresis and ELISA,respectively.Results:Out of the nine continuous epitopes identified,the sequence at position 193-208(LKVREDYSLECDPAVI)was selected and used to produce anti-peptide IgY.The produced IgY was found to bind to the synthetic analog of the Zika virus NS1 immunogenic epitope but not to other flaviviruses and random peptides from other pathogens.Conclusions:In this study,we identified an immunogenic epitope unique to Zika virus that can be used to develop a serodiagnostic tool that specifically detect Zika virus infection.展开更多
The use of immunoglobulin is successfully applied in different areas of research, diagnostics, medical application and biotechnology. Egg yolk immunoglobulin (IgY) can successfully compete with immunoglobulin (IgG) pr...The use of immunoglobulin is successfully applied in different areas of research, diagnostics, medical application and biotechnology. Egg yolk immunoglobulin (IgY) can successfully compete with immunoglobulin (IgG) produced in the blood of mammals. Recently, successful progresses have been achieved in Japan through industrialization of IgY technology. Using IgY has been shown to provide a safer, more efficient and less expensive method for managing disease-causing pathogens. Helicobacter pylori (H. pylori), a spiral Gram-negative microaerophilic pathogen, it infects over 50% of the population worldwide, and is recognized as the etiologic agent of gastritis, peptic ulcer, and has been linked to the development of gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. It is found that urease is the most abundant protein of H. pylori. Urease is recognized as an essential factor in the organism colonization of the gastric mucosa. The eradication of H. pylori by administration of oral antimicrobials is not always successful and may be associated with adverse effects. Therefore, several treatment regimens have emerged to cure H. pylori infection. Accordingly, a novel approach in prevention and reduction of H. pylori infection has been reported based on production of urease-specific immunoglobulin that can suppress the bacterial colonization through urease-binding by anti-H. pylori urease IgY (IgY-urease). The use of IgY against a pathogenic factor of H. pylori will be a prudent way to suppress the infection.展开更多
文摘Objective:To identify unique immunogenic epitopes of Zika virus non-structural 1(NS1)antigen and produce immunoglobulin Y(IgY)for potential use in he diagnosis of of Zika virus infection.Methods:Immunogenic epitopes were identified using in silico B-cell epitope prediction.A synthetic peptide analog of the predicted epitope was used to induce antipeptide IgY production in hens which was purified using affinity chromatography.Presence of purified IgY and its binding specificity were performed by gel electrophoresis and ELISA,respectively.Results:Out of the nine continuous epitopes identified,the sequence at position 193-208(LKVREDYSLECDPAVI)was selected and used to produce anti-peptide IgY.The produced IgY was found to bind to the synthetic analog of the Zika virus NS1 immunogenic epitope but not to other flaviviruses and random peptides from other pathogens.Conclusions:In this study,we identified an immunogenic epitope unique to Zika virus that can be used to develop a serodiagnostic tool that specifically detect Zika virus infection.
文摘The use of immunoglobulin is successfully applied in different areas of research, diagnostics, medical application and biotechnology. Egg yolk immunoglobulin (IgY) can successfully compete with immunoglobulin (IgG) produced in the blood of mammals. Recently, successful progresses have been achieved in Japan through industrialization of IgY technology. Using IgY has been shown to provide a safer, more efficient and less expensive method for managing disease-causing pathogens. Helicobacter pylori (H. pylori), a spiral Gram-negative microaerophilic pathogen, it infects over 50% of the population worldwide, and is recognized as the etiologic agent of gastritis, peptic ulcer, and has been linked to the development of gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. It is found that urease is the most abundant protein of H. pylori. Urease is recognized as an essential factor in the organism colonization of the gastric mucosa. The eradication of H. pylori by administration of oral antimicrobials is not always successful and may be associated with adverse effects. Therefore, several treatment regimens have emerged to cure H. pylori infection. Accordingly, a novel approach in prevention and reduction of H. pylori infection has been reported based on production of urease-specific immunoglobulin that can suppress the bacterial colonization through urease-binding by anti-H. pylori urease IgY (IgY-urease). The use of IgY against a pathogenic factor of H. pylori will be a prudent way to suppress the infection.