Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta...Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.展开更多
Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research w...Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da...Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.展开更多
Recently,the application of Bayesian updating to predict excavation-induced deformation has proven successful and improved prediction accuracy significantly.However,updating the ground settlement profile,which is cruc...Recently,the application of Bayesian updating to predict excavation-induced deformation has proven successful and improved prediction accuracy significantly.However,updating the ground settlement profile,which is crucial for determining potential damage to nearby infrastructures,has received limited attention.To address this,this paper proposes a physics-guided simplified model combined with a Bayesian updating framework to accurately predict the ground settlement profile.The advantage of this model is that it eliminates the need for complex finite element modeling and makes the updating framework user-friendly.Furthermore,the model is physically interpretable,which can provide valuable references for construction adjustments.The effectiveness of the proposed method is demonstrated through two field case studies,showing that it can yield satisfactory predictions for the settlement profile.展开更多
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address the...Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address these issues.Utilizing five key technologies,the ECM effectively modulates radial stress post-excavation,redistributes stress in the surrounding rock,and eliminates tensile stress at the excavation face.Pre-tensioning measures further enhance the rock’s residual strength,establishing a new stability equilibrium.Field tests corroborate the method’s effectiveness,demonstrating a crown settlement reduction of 3–8 mm,a nearly 50%decrease compared to conventional construction approaches.Additionally,material consumption and construction duration were reduced by approximately 30%–35%and 1.75 months per 100 m,respectively.Thus,the ECM represents a significant innovation in enhancing the stability and construction efficiency of large-span rock tunnels,marking a novel contribution to the engineering field.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the h...The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel.展开更多
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ...Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
Excavation of underground caverns,such as mountain tunnels and energy-storage caverns,may cause the damages to the surrounding rock as a result of the stress redistribution.In this influenced zone,new cracks and disco...Excavation of underground caverns,such as mountain tunnels and energy-storage caverns,may cause the damages to the surrounding rock as a result of the stress redistribution.In this influenced zone,new cracks and discontinuities are created or propagate in the rock mass.Therefore,it is effective to measure and evaluate the acoustic emission(AE)events generated by the rocks,which is a small elastic vibration,and permeability change.The authors have developed a long-term measurement device that incorporates an optical AE(O-AE)sensor,an optical pore pressure sensor,and an optical temperature sensor in a single multi-optical measurement probe(MOP).Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste(HLW)deep geological disposal technology.In a high-level radioactive disposal project,one of the challenges is the development of methods for long-term monitoring of rock mass behavior.Therefore,in January 2014,the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the developed MOP in the vicinity of 350 m below the surface at the Horonobe Underground Research Center.The measurement results show that AEs occur frequently up to 1.5 m from the wall during excavation.In addition,hydraulic conductivity increased by 2e4 orders of magnitude.Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures.Based on this,a conceptual model is developed to represent the excavation damaged zone(EDZ),which contributes to the safe geological disposal of radioactive waste.展开更多
In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental applicati...In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental application was carried out in the upper channel 2304 of a mine in Henan Province. The test results showed that polymer modified cement mortar spraying material could effectively support the roadway and greatly reduce the deformation rate of the roadway. The best spraying thickness is 5 mm. Through the monitoring of tunnel air leakage, it is concluded that the polymer modified cement mortar spraying material can reduce the tunnel air leakage and play a better sealing effect.展开更多
Based on field investigations, this paper analyzes three types of harbour basinns and navigation channel excavated on seabed in Jiaozhou Bay, get a general rule of deposition for excavated trough, it found that pollut...Based on field investigations, this paper analyzes three types of harbour basinns and navigation channel excavated on seabed in Jiaozhou Bay, get a general rule of deposition for excavated trough, it found that pollution is one of crucial factors resulting in the deposition of the excavated trough in the east shore of Jiaozhou Bay. With these results, it predicted the annual deposition thickness for the excavated trough and disclosed the fact that it can't be deposited deadly during one storm. At the same time, with two-dimensional numerical model, it studied the effects of the excavated trough and the reclamation near shore on tidal cureent and said that the excavated trough can decrease the current velocity passing through the trough about 10- 15%, but only limited inside and near the trough and there are no effect on other regions; reclamation can cut off the pollution sources and no obvious effect on the currents of the Jiaozhou Bay. Connecting the deep trough and Cangkou tidal channel with a new excavated trough can improve the current conditions on the deep trough in some degree, but not great.展开更多
In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summ...In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.展开更多
Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positio...Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.展开更多
This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at bo...This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at both the design review and operational stages of a mine's life to categonse the risk of an excavated coal mine slope. A likelihood of failure is determined using a new slope stability classification system for excavated coal mine slopes developed using a database of 119 intact and failed case studies sourced from open cut coal mines in Australia. Consequence of failure is based on slope height and stand-off distance at the toe of the excavated slope. Results are presented in a new risk matrix, with slope risk being divided into low, medium and high categories. The SSAM is put forward as a new risk assess- ment methodology to assess the potential for, and consequence of, excavated coal mine slope failure. Unlike existing classification systems, assumptions about the likely failure mode or mechanism are not required. Instead, the SSAM applies an approach which compares the conditions present within the exca- vated slope face, with the known past performance of slopes with similar geotechnical and geometrical conditions, to estimate the slope's propensity for failure. The SSAM is novel in that it considers the depo- sitional history of strata in an excavated slope and how this sequence affects slope stability. It is further novel in that it does not require explicit measurements of intact rock, rock mass and/or defect strength to rapidly calculate a slope's likelihood of failure and overall risk. Ratings can be determined entirely from visual observations of the excavated slope face. The new SSAM is designed to be used in conjunction with existing slope stability assessment tools.展开更多
Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including ...Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO_(2) emission from the huge loess carbon pool.This study aims to determine the potential of loess CO_(2) emission induced by excavation.Soil CO_(2) were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO_(2) and SOC were used to identify their sources.The results showed that the soil CO_(2) concentrations ranged from 830μL·L^(-1) to 11190μL·L^(-1) with an annually reducing trend after excavation,indicating that the human excavation can induce CO_(2) production in loess profile.Theδ^(13) C of CO_(2) ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ^(13)CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ^(13) C-CO_(2) in this study has a positive relationship with the reversed CO_(2) concentration,and it is calculated that 80.22%of the soil CO_(2) in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO_(2) to atmosphere.展开更多
To ensure the stability of the high rock slopes of the permanent shiplock of the Three Gorges Project is the key to the successful construction and normal operation of the shiplock. In the course of the slope excavati...To ensure the stability of the high rock slopes of the permanent shiplock of the Three Gorges Project is the key to the successful construction and normal operation of the shiplock. In the course of the slope excavation, effective deformation monitoring, well understanding of the deformation characteristics, and reasonable analyzing and predicting of the deformation trend of the high slopes are important aspects of work for the slope excavation and dynamic design of the shiplock. The optimized design, successful implementation of deformation monitoring and accurate monitoring results are the important guarantee for carrying out the project. The monitoring design of the permanent shiplock was conducted in accordance with the general principles of "laying stress on the key points, considering parts as well as the whole, planning uniformly and conducting in stages". The deformation monitoring system of the permanent shiplocks is composed of survey network for horizontal and vertical displacements, monitoring points, inverted plumb lines, tension wires, extensimeters, etc.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.
基金the Research Fund of National Natural Science Foundation of China(NSFC)(Grant Nos.42477142 and 42277154)the Project of Slope Safety Control and Disaster Prevention Technology Innovation team of“Youth Innovation Talent Introduction and Education Plan”of Shandong Colleges and Universities(Grant No.Lu Jiao Ke Han[2021]No.51)。
文摘Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金supported by the National Natural Science Foundation of China(Grant No.42307218)the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(Grant No.2022P08)the Natural Science Foundation of Zhejiang Province(Grant No.LTZ21E080001).
文摘Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.
基金the financial support from the Guangdong Provincial Department of Science and Technology(Grant No.2022A0505030019)the Science and Technology Development Fund,Macao SAR,China(File Nos.0056/2023/RIB2 and SKL-IOTSC-2021-2023).
文摘Recently,the application of Bayesian updating to predict excavation-induced deformation has proven successful and improved prediction accuracy significantly.However,updating the ground settlement profile,which is crucial for determining potential damage to nearby infrastructures,has received limited attention.To address this,this paper proposes a physics-guided simplified model combined with a Bayesian updating framework to accurately predict the ground settlement profile.The advantage of this model is that it eliminates the need for complex finite element modeling and makes the updating framework user-friendly.Furthermore,the model is physically interpretable,which can provide valuable references for construction adjustments.The effectiveness of the proposed method is demonstrated through two field case studies,showing that it can yield satisfactory predictions for the settlement profile.
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.
基金Projects(42377148,51674265)supported by the National Natural Science Foundation of ChinaProject(2018YFC0603705)supported by the National Key Research and Development Program of China。
文摘Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address these issues.Utilizing five key technologies,the ECM effectively modulates radial stress post-excavation,redistributes stress in the surrounding rock,and eliminates tensile stress at the excavation face.Pre-tensioning measures further enhance the rock’s residual strength,establishing a new stability equilibrium.Field tests corroborate the method’s effectiveness,demonstrating a crown settlement reduction of 3–8 mm,a nearly 50%decrease compared to conventional construction approaches.Additionally,material consumption and construction duration were reduced by approximately 30%–35%and 1.75 months per 100 m,respectively.Thus,the ECM represents a significant innovation in enhancing the stability and construction efficiency of large-span rock tunnels,marking a novel contribution to the engineering field.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金Project(N2022G031)supported by the Science and Technology Research and Development Program Project of China RailwayProjects(2022-Key-23,2021-Special-01A)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(52308419)supported by the National Natural Science Foundation of China。
文摘The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel.
基金supported by the National Natural Science Foundation of China(Grant Nos.52208380 and 51979270)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021022).
文摘Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
文摘Excavation of underground caverns,such as mountain tunnels and energy-storage caverns,may cause the damages to the surrounding rock as a result of the stress redistribution.In this influenced zone,new cracks and discontinuities are created or propagate in the rock mass.Therefore,it is effective to measure and evaluate the acoustic emission(AE)events generated by the rocks,which is a small elastic vibration,and permeability change.The authors have developed a long-term measurement device that incorporates an optical AE(O-AE)sensor,an optical pore pressure sensor,and an optical temperature sensor in a single multi-optical measurement probe(MOP).Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste(HLW)deep geological disposal technology.In a high-level radioactive disposal project,one of the challenges is the development of methods for long-term monitoring of rock mass behavior.Therefore,in January 2014,the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the developed MOP in the vicinity of 350 m below the surface at the Horonobe Underground Research Center.The measurement results show that AEs occur frequently up to 1.5 m from the wall during excavation.In addition,hydraulic conductivity increased by 2e4 orders of magnitude.Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures.Based on this,a conceptual model is developed to represent the excavation damaged zone(EDZ),which contributes to the safe geological disposal of radioactive waste.
文摘In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental application was carried out in the upper channel 2304 of a mine in Henan Province. The test results showed that polymer modified cement mortar spraying material could effectively support the roadway and greatly reduce the deformation rate of the roadway. The best spraying thickness is 5 mm. Through the monitoring of tunnel air leakage, it is concluded that the polymer modified cement mortar spraying material can reduce the tunnel air leakage and play a better sealing effect.
文摘Based on field investigations, this paper analyzes three types of harbour basinns and navigation channel excavated on seabed in Jiaozhou Bay, get a general rule of deposition for excavated trough, it found that pollution is one of crucial factors resulting in the deposition of the excavated trough in the east shore of Jiaozhou Bay. With these results, it predicted the annual deposition thickness for the excavated trough and disclosed the fact that it can't be deposited deadly during one storm. At the same time, with two-dimensional numerical model, it studied the effects of the excavated trough and the reclamation near shore on tidal cureent and said that the excavated trough can decrease the current velocity passing through the trough about 10- 15%, but only limited inside and near the trough and there are no effect on other regions; reclamation can cut off the pollution sources and no obvious effect on the currents of the Jiaozhou Bay. Connecting the deep trough and Cangkou tidal channel with a new excavated trough can improve the current conditions on the deep trough in some degree, but not great.
基金funded by the China Postdoctoral Science Foundation(No. 2014M551909)the Jiangsu Geology & Mineral Exploration Bureau’s Science Foundation(No.2013-KY-13)
文摘In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.
基金supported by the National Natural Science Foundation of China(Grant No.51379109)
文摘Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.
基金funded by the Australian Coal Association Research Program(ACARP)
文摘This paper presents a new risk assessment methodology for coal mine excavated slopes. This new empirical-statistical slope.stability assessment m. ethodology (SSAM! is intended for use by geotechnical engineers at both the design review and operational stages of a mine's life to categonse the risk of an excavated coal mine slope. A likelihood of failure is determined using a new slope stability classification system for excavated coal mine slopes developed using a database of 119 intact and failed case studies sourced from open cut coal mines in Australia. Consequence of failure is based on slope height and stand-off distance at the toe of the excavated slope. Results are presented in a new risk matrix, with slope risk being divided into low, medium and high categories. The SSAM is put forward as a new risk assess- ment methodology to assess the potential for, and consequence of, excavated coal mine slope failure. Unlike existing classification systems, assumptions about the likely failure mode or mechanism are not required. Instead, the SSAM applies an approach which compares the conditions present within the exca- vated slope face, with the known past performance of slopes with similar geotechnical and geometrical conditions, to estimate the slope's propensity for failure. The SSAM is novel in that it considers the depo- sitional history of strata in an excavated slope and how this sequence affects slope stability. It is further novel in that it does not require explicit measurements of intact rock, rock mass and/or defect strength to rapidly calculate a slope's likelihood of failure and overall risk. Ratings can be determined entirely from visual observations of the excavated slope face. The new SSAM is designed to be used in conjunction with existing slope stability assessment tools.
基金funded by National Natural Science Foundation of China(Grant No.41877398)the Basic Science Research Fund from the Institute of Chinese Academy of Geological Sciences(Grant No.SK201911)the Belt and Road Fund on Water and Sustainability(U2019NKMS01)。
文摘Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO_(2) emission from the huge loess carbon pool.This study aims to determine the potential of loess CO_(2) emission induced by excavation.Soil CO_(2) were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO_(2) and SOC were used to identify their sources.The results showed that the soil CO_(2) concentrations ranged from 830μL·L^(-1) to 11190μL·L^(-1) with an annually reducing trend after excavation,indicating that the human excavation can induce CO_(2) production in loess profile.Theδ^(13) C of CO_(2) ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ^(13)CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ^(13) C-CO_(2) in this study has a positive relationship with the reversed CO_(2) concentration,and it is calculated that 80.22%of the soil CO_(2) in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO_(2) to atmosphere.
文摘To ensure the stability of the high rock slopes of the permanent shiplock of the Three Gorges Project is the key to the successful construction and normal operation of the shiplock. In the course of the slope excavation, effective deformation monitoring, well understanding of the deformation characteristics, and reasonable analyzing and predicting of the deformation trend of the high slopes are important aspects of work for the slope excavation and dynamic design of the shiplock. The optimized design, successful implementation of deformation monitoring and accurate monitoring results are the important guarantee for carrying out the project. The monitoring design of the permanent shiplock was conducted in accordance with the general principles of "laying stress on the key points, considering parts as well as the whole, planning uniformly and conducting in stages". The deformation monitoring system of the permanent shiplocks is composed of survey network for horizontal and vertical displacements, monitoring points, inverted plumb lines, tension wires, extensimeters, etc.