期刊文献+
共找到4,040篇文章
< 1 2 202 >
每页显示 20 50 100
Designing Symmetric Gradient Honeycomb Structures with Carbon‑Coated Iron‑Based Composites for High‑Efficiency Microwave Absorption 被引量:1
1
作者 Yu Zhang Shu‑Hao Yang +9 位作者 Yue Xin Bo Cai Peng‑Fei Hu Hai‑Yang Dai Chen‑Ming Liang Yun‑Tong Meng Ji‑Hao Su Xiao‑Juan Zhang Min Lu Guang‑Sheng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期224-241,共18页
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(... The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties. 展开更多
关键词 MIL-88C(Fe) Fe/Fe_(3)O_(4)/Fe_(3)C@C Controllable preparation Symmetric gradient honeycomb structure Microwave absorbing
下载PDF
Experimental and numerical study of effecting core configurations on the static and dynamic behavior of honeycomb plate with aluminum material
2
作者 Nehad Abid Allah Hamza Fatima Mohammed K.AL-Fatlwe Muna Ali Talib 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期177-192,共16页
The sandwich panel incorporated a honeycomb core,a widely utilized composite structure recognized as a fundamental classification of composite materials.Comprised a core resembling a honeycomb,possessing thickness and... The sandwich panel incorporated a honeycomb core,a widely utilized composite structure recognized as a fundamental classification of composite materials.Comprised a core resembling a honeycomb,possessing thickness and softness,and is flank by rigid face sheets that sandwich various shapes and materials.This paper presents an examination of the static and dynamic analysis of lightweight plates made of aluminum honeycomb sandwich composites.Honeycomb sandwich plate samples are 300 mm long,and 300 mm wide,the heights of the core have been varied at four values ranging from 10 to 25 mm.The honeycomb core is manufactured from Aluminum material by using a novel technique namely resistance spot welding(RSW)instead of using adhesive material,which is often used when an industrial flaw is detected.Numerical optimization based on response surface methodology(RSM)and design of experiment software(DOE)was used to verify the current work.A theoretical examination of the crashworthiness behavior(maximum bending load,maximum deflection)and vibration attributes(natural frequency,damping ratio,transient temporal response)of honeycomb sandwich panels with different design parameters was also carried out.In addition,the finite element method-based ANSYS software was used to confirm the theoretical conclusions.The findings of the present work showed that the relationship between the natural frequency,core height,and cell size is direct.In contrast,the relationship between the natural frequency and the thickness of the cell wall is inverse.Conversely,the damping ratio is inversely proportional to the core height and cell size but directly proportional to the thickness of the cell wall.The study indicates that altering the core height within 10-25 mm leads to a significant increase of 82%in the natural frequency and a notable decrease of 49%in the damping ratio.These findings are based on a specific cell size value of 0.01 m and a cell wall thickness of 0.001 m.Also,the results indicate that for a given set of cell wall thickness and size values,an increase in core height from(0.01-0.025)m,leads to a reduction of the percentage of maximum response approX imately 76%.Conversely,the increasing thickness of the wall of cell wall,ranging 0.3-0.7 mm with a constant core height equal to 0.015 m,resulted in a de crease of maximum transient response by 7.8%. 展开更多
关键词 honeycomb Load Transient response Free vibration Natural frequency
下载PDF
Dynamic response of honeycomb-FGS shells subjected to the dynamic loading using non-polynomial higher-order IGA
3
作者 Pham Binh Le Trung-Thanh Tran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期149-161,共13页
The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin lay... The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail. 展开更多
关键词 IGA Elastic foundation Dynamic response FGM Auxetic honeycomb Shell
下载PDF
Control and vibration analyses of a sandwich doubly curved micro-composite shell with honeycomb,truss,and corrugated cores based on the fourth-order shear deformation theory
4
作者 F.SHIRDELAN M.MOHAMMADIMEHR F.BARGOZINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1773-1790,共18页
Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulati... Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulating vibrations and destroying them afterward is a challenge to scientists.In this paper,the curve shell equations and a linear quadratic regulator are adopted for the state feedback design to manage the structure vibrations in state space forms.A five-layer sandwich doubly curved micro-composite shell,comprising two piezoelectric layers for the sensor and actuator,is modeled by the fourth-order shear deformation theory.The core(honeycomb,truss,and corrugated)is analyzed for the bearing of transverse shear forces.The results show that the honeycomb core has a greater effect on the vibrations.When the parameters related to the core and the weight percentage of graphene increase,the frequency increases.The uniform distribution of graphene platelets results in the lowest natural frequency while the natural frequency increases.Furthermore,without taking into account the piezoelectric layers,the third-order shear deformation theory(TSDT)and fourth-order shear deformation theory(FOSDT)align closely.However,when the piezoelectric layers are incorporated,these two theories diverge significantly,with the frequencies in the FOSDT being lower than those in the TSDT. 展开更多
关键词 vibration and control doubly curved shell micro-composite honeycomb TRUSS corrugate core
下载PDF
Dynamics of a rotating ring-stiffened sandwich conical shell with an auxetic honeycomb core
5
作者 S.JAHANGIRI A.GHORBANPOUR ARANI Z.KHODDAMI MARAGHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期963-982,共20页
The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing th... The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing the first-order shear deformation theory(FSDT)incorporating the relative,centripetal,and Coriolis accelerations alongside the initial hoop tension created by the rotation.The governing equations,compatibility conditions,and boundary conditions are attained using Hamilton’s principle.Utilizing trigonometric functions,an analytical solution is derived in the circumferential direction,and a numerical one is presented in the meridional direction via the differential quadrature method(DQM).The effects of various factors on the critical rotational speeds and forward and backward frequencies of the shell are studied.The present work is the first theoretical work regarding the dynamic analysis of a rotating sandwich conical shell with an auxetic honeycomb core strengthened with a ring support. 展开更多
关键词 free vibration conical shell rotating shell ring support auxetic honeycomb
下载PDF
Non-Fourier heat conduction induced thermal shock fracture behavior of multi-crack auxetic honeycomb structures
6
作者 Junsong HU Baoling WANG +1 位作者 Yang YANG Dong XIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第12期2093-2112,共20页
The investigation of non-Fourier thermal shock fracture behavior in multicrack auxetic honeycomb structures(HSs) is presented. By employing a non-Fourier heat conduction model, the corresponding temperature and therma... The investigation of non-Fourier thermal shock fracture behavior in multicrack auxetic honeycomb structures(HSs) is presented. By employing a non-Fourier heat conduction model, the corresponding temperature and thermal stress fields are established. Subsequently, a thermal stress intensity factor(TSIF) model for the auxetic HSs,accounting for multi-crack interactions, is developed. Finally, using the fracture-based failure criterion, the non-Fourier multi-crack critical temperature of the auxetic HSs is determined. This investigation thoroughly examines the effects of the non-Fourier effect(NFE), auxetic property, crack spacing, and crack location on the thermal shock fracture behavior of the auxetic HSs. Results indicate that a stronger NFE leads to weaker thermal shock resistance in auxetic HSs. Regardless of the presence of the NFE, the auxetic property consistently increases the multi-crack critical temperature of the HSs.Additionally, the interaction of multi-crack inhibits thermal shock crack propagation in HSs. 展开更多
关键词 non-Fourier effect(NFE) auxetic honeycomb structure(HS) multi-crack thermal shock fracture
下载PDF
Impact Performance Research of Re-Entrant Octagonal Negative Poisson’s Ratio Honeycomb with Gradient Design
7
作者 Yiyuan Li Yongjing Li +1 位作者 Shilin Yan Pin Wen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期3105-3119,共15页
Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the resul... Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials. 展开更多
关键词 Re-entrant honeycomb gradient design finite element analysis additive manufacturing technologies
下载PDF
Experimental crushing behavior and energy absorption of angular gradient honeycomb structures under quasi-static and dynamic compression
8
作者 Jiachen Li Yuchen Wei +2 位作者 Hao Wu Xingyu Shen Mengqi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期47-63,共17页
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and... The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments. 展开更多
关键词 Negative Poisson's ratio Gradient honeycomb structure Quasi-static compression Dynamic impact Titanium alloy
下载PDF
Microstructures and Properties of Honeycomb Sulfur/carbon Black/MoS_(2) Composites
9
作者 CUI Chunjuan LIU Yue +4 位作者 ZHAO Yanan LIU Yanyun WANG Yan WEI Jian HU Ping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1073-1078,共6页
Microstructure and property of sulfur/carbon black composites prepared by ball milling were studied.Sulfur/carbon black composites were obtained by melting the mixture of sulfur and carbon black in 155℃and dispersing... Microstructure and property of sulfur/carbon black composites prepared by ball milling were studied.Sulfur/carbon black composites were obtained by melting the mixture of sulfur and carbon black in 155℃and dispersing evenly in carbon black after hydrothermal reaction.Thus,its conductive properties were improved.Moreover,microstructure and property of honeycomb sulfur/carbon black/MoS_(2) prepared by hydrothermal method as a cathode material for lithium-sulfur batteries were studied.The initial discharge specific capacity of the material at 0.2 A/g current density is 838.495 mA·h/g,and the 55.14%after 100 weeks of cycling.It is indicated that MoS_(2) can not only combine with polysulfides through electrostatic action or the action of chemical bonds,but also honeycomb porous structure.MoS_(2) can fix polysulfides groups and prevent their shuttle.Therefore,the cycling performance of the battery is effectively improved. 展开更多
关键词 lithium-sulfur battery honeycomb MoS_(2) charge/discharge performance
下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
10
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 Blast load Two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
下载PDF
Acoustical properties of a 3D printed honeycomb structure filled with nanofillers:Experimental analysis and optimization for emerging applications
11
作者 Jeyanthi Subramanian Vinoth kumar Selvaraj +3 位作者 Rohan Singh Ilangovan S Naresh Kakur Ruban Whenish 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期248-258,共11页
The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E ... The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E 1050-12.The Creality Ender-3,a 3D printer,was used for printing the honeycomb structures,and polylactic acid(PLA)material was employed for their construction.The organic,inorganic,and polymeric compounds within the composites were identified using fourier transformation infrared(FTIR)spectroscopy.The structure and homogeneity of the samples were examined using a field emission scanning electron microscope(FESEM).To determine the sound absorption coefficient of the 3D printed honeycomb structure,numerous samples were systematically developed using central composite design(CCD)and analysed using response surface methodology(RSM).The RSM mathematical model was established to predict the optimum values of each factor and noise reduction coefficient(NRC).The optimum values for an NRC of 0.377 were found to be 1.116 wt% carbon black,1.025 wt% aluminium powder,and 3.151 mm distance between parallel edges.Overall,the results demonstrate that a 3Dprinted honeycomb structure filled with nanofillers is an excellent material that can be utilized in various fields,including defence and aviation,where lightweight and acoustic properties are of great importance. 展开更多
关键词 3D printing honeycomb structure ACOUSTICS Field emission scanning electron microscope Response surface methodology
下载PDF
Laser Powder Bed Fusion of Multifunctional Bio-inspired Vertical Honeycomb Sandwich Structures:For the Application of Lightweight Bipolar Plates of Proton Exchange Membrane Fuel Cells
12
作者 Kaijie Lin Yong Xu +3 位作者 Dongdong Gu Junhao Shan Keyu Shi Wanli Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期60-75,共16页
The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Th... The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity. 展开更多
关键词 Lightweight bipolar plates Bio-inspired honeycomb sandwich structures Laser powder bed fusion Forming quality Bending properties Electrical conductivity
下载PDF
A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals
13
作者 Shuai Chen Yinwei Ma +5 位作者 Zhongshu Wang Zongmei Xu Song Zhang Jianle Li Hao Xu Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第2期125-141,共17页
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt... The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state. 展开更多
关键词 Structural health monitoring distributed opticalfiber sensor damage identification honeycomb sandwich panel principal component analysis
下载PDF
变泊松比蜂窝夹芯结构的吸波性能优化设计
14
作者 孙士平 常梦源 胡政 《复合材料科学与工程》 北大核心 2025年第1期67-75,共9页
采用泊松比分类六边形蜂窝构型,基于均匀化理论建立蜂窝单胞参数化有限元模型,开展了变泊松比蜂窝夹芯结构的吸波性能分析与给定反射率目标的蜂窝构型优化。计算结果表明:2~18 GHz电磁波垂直入射工况下,减小蜂窝边长和增大蜂窝高度均能... 采用泊松比分类六边形蜂窝构型,基于均匀化理论建立蜂窝单胞参数化有限元模型,开展了变泊松比蜂窝夹芯结构的吸波性能分析与给定反射率目标的蜂窝构型优化。计算结果表明:2~18 GHz电磁波垂直入射工况下,减小蜂窝边长和增大蜂窝高度均能有效提高结构吸波性能,使泊松比趋于零的蜂窝角度变化可提高吸波性能,存在与蜂窝几何参数匹配的最佳涂层厚度,能够获得最优吸波性能;与正泊松比常规六边形蜂窝、零泊松比半内凹六边形蜂窝和负泊松比内凹六边形蜂窝的初始方案相比,反射率为-10 dB时,三种优化蜂窝吸收带宽分别增大了56.8%、35.2%、52.5%,而反射率为-20 dB时,三种优化蜂窝吸收带宽分别从零增大为4 GHz、2.3 GHz、0.5 GHz;三种泊松比蜂窝中,正泊松比蜂窝的优化适应潜力最好。研究结果为多功能蜂窝吸波结构的蜂窝构型设计提供了参考。 展开更多
关键词 吸波性能 泊松比 蜂窝构型 优化设计 蜂窝夹芯结构 复合材料
下载PDF
基于PMI泡沫的可重复使用结构隔声性能研究
15
作者 秦朝红 侯传涛 +4 位作者 康军 魏龙 荣克林 郝子元 任方 《振动与冲击》 北大核心 2025年第2期344-350,共7页
可重复飞行器飞行过程中,面临着复杂的力、热、空间等载荷环境,对飞行器系统可靠性和结构完整性提出了需求。可重复飞行器上升、再入过程中受到严酷的气动噪声环境,噪声传到飞行器内,会对内部的设备产生影响。因此在对结构进行设计时,... 可重复飞行器飞行过程中,面临着复杂的力、热、空间等载荷环境,对飞行器系统可靠性和结构完整性提出了需求。可重复飞行器上升、再入过程中受到严酷的气动噪声环境,噪声传到飞行器内,会对内部的设备产生影响。因此在对结构进行设计时,除了轻质、承载、耐温等设计要求外,还要达到很好的隔声性能,在轨期间满足一定的空间环境要求,并可实现可重复使用。考虑到聚甲基丙烯酰亚胺(polymethacrylimide, PMI)泡沫优异的耐热性、比强度高、轻质等特点,将PMI泡沫与复合材料蜂窝板进行复合,开展其隔声性能研究,获取了典型试验件的隔声性能。在此基础上对飞行器结构进行了设计,通过试验验证了其良好的隔声效果。开展了不同剂量的带电粒子辐照试验,对其多次、长期在轨后的隔声性能进行了评估,在30~5 000 krad(Si)粒子辐照下,不管是PMI泡沫还是PMI泡沫与蜂窝复合结构的隔声性能变化不大,满足可重复使用的隔声性能要求。 展开更多
关键词 可重复使用结构 隔声性能 空间环境 聚甲基丙烯酰亚胺(PMI)泡沫 蜂窝结构
下载PDF
胞元尺寸对聚醚醚酮蜂窝夹芯板动态冲击性能的影响
16
作者 文周 杨丽君 +2 位作者 舒润泽 钟烨 樊亚祎 《塑料工业》 北大核心 2025年第1期111-118,共8页
聚醚醚酮(PEEK)蜂窝夹芯结构在低速动态冲击下的动力学性能受胞元几何参数的影响显著。本研究采用实验与数值模拟相结合的方法,对能量冲击为15 J的PEEK蜂窝夹芯板进行动态响应分析,并验证了有限元模型的准确性。在此基础上,模拟了9组具... 聚醚醚酮(PEEK)蜂窝夹芯结构在低速动态冲击下的动力学性能受胞元几何参数的影响显著。本研究采用实验与数值模拟相结合的方法,对能量冲击为15 J的PEEK蜂窝夹芯板进行动态响应分析,并验证了有限元模型的准确性。在此基础上,模拟了9组具有不同胞元几何参数的PEEK蜂窝夹芯板的动态冲击响应过程,以峰值载荷和比吸能(SEA)为主要动力学指标。结果表明,SEA对胞元几何参数高度敏感,其变化范围从48.82 J/kg到310.54 J/kg。动态冲击过程中,峰值载荷主要受支柱直径和胞元高度的影响,而SEA值则主要受胞元高度的影响。当支柱直径为3.3 mm,六边形外径为10.8 mm,胞元高度为10.417 mm时,蜂窝夹芯板可实现最大峰值载荷和最大SEA的双重优化。本研究结果为PEEK蜂窝夹芯结构的设计提供了优化依据,有助于提升其在服役过程中的结构稳定性。 展开更多
关键词 聚醚醚酮 蜂窝夹芯结构 低速动态冲击 胞元几何参数 数值模拟
下载PDF
利用Breath Figure法制备具有Honeycomb结构的有机/无机复合膜 被引量:6
17
作者 申延明 吴静 +4 位作者 卢欣 唐杨军 刘丹 李长龙 李天舒 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2009年第7期1464-1468,共5页
以聚苯乙烯和正硅酸乙酯的有机溶液为铸膜溶液,利用Breath Figure法制备了PS/SiO2 Honeycomb结构复合膜.采用SEM对复合膜进行了形貌分析,探讨了聚合物浓度、PS/TEOS配比、聚合物的结构、溶剂等对膜Honeycomb结构的影响.研究结果表明,聚... 以聚苯乙烯和正硅酸乙酯的有机溶液为铸膜溶液,利用Breath Figure法制备了PS/SiO2 Honeycomb结构复合膜.采用SEM对复合膜进行了形貌分析,探讨了聚合物浓度、PS/TEOS配比、聚合物的结构、溶剂等对膜Honeycomb结构的影响.研究结果表明,聚合物浓度在20~50mg/mL,PS/TEOS质量比大于2∶1的条件下可以制备结构完整的多孔膜,且制备的Honeycomb结构在0.8cm2内无缺陷;采用双羧基封端的聚苯乙烯成膜效果好于单羧基封端的成膜效果;以氯仿和苯作为溶剂均可以制备完全Honeycomb结构的复合膜,但以苯为溶剂制备的多孔膜孔径较大.成膜中TEOS水解不完全,复合膜中混杂着未完全水解的TEOS以及SiO2.EDS面扫描分析表明,Si和O均匀地分散在复合膜中. 展开更多
关键词 BREATH Figure法 水辅助法 有序多孔膜 honeycomb结构 有机/无机复合膜
下载PDF
小口径弹丸侵彻双箭头负泊松比蜂窝夹芯结构的弹道特性
18
作者 刘洋佐 徐诚 +2 位作者 马吴宁 任杰 张震东 《上海交通大学学报》 北大核心 2025年第1期139-150,共12页
通过有限元仿真的方法研究双箭头负泊松比蜂窝夹芯结构的抗侵彻性能,利用小口径弹丸侵彻9种双箭头负泊松比蜂窝夹芯结构,获得双箭头负泊松比蜂窝夹芯结构的弹道特性.通过仿真得到弹丸侵彻过程中姿态变化,建立弹丸侵彻双箭头胞元的动力... 通过有限元仿真的方法研究双箭头负泊松比蜂窝夹芯结构的抗侵彻性能,利用小口径弹丸侵彻9种双箭头负泊松比蜂窝夹芯结构,获得双箭头负泊松比蜂窝夹芯结构的弹道特性.通过仿真得到弹丸侵彻过程中姿态变化,建立弹丸侵彻双箭头胞元的动力学仿真模型.仿真模拟表明:当上下面层厚度不变,仅增大芯层双箭头夹角,蜂窝夹芯结构的弹道极限随之降低.对于相同蜂窝夹芯结构,子弹初始速度与结构动能吸收率存在非线性关系,存在某一速度区间使得蜂窝夹芯结构抗侵彻性能最佳.侵彻过程中弹丸周向存在应力分布不均现象,产生非对称作用使弹丸受力环境变化,导致弹丸姿态角改变,最终引起弹丸的侵彻弹道失稳. 展开更多
关键词 负泊松比 蜂窝夹芯结构 小口径枪弹 侵彻
下载PDF
芳纶铺层-蜂窝夹芯U形前缘固化变形仿真计算模型与验证
19
作者 刘琦 唐珊珊 +3 位作者 王小凯 郭俊刚 牛建文 许英杰 《复合材料科学与工程》 北大核心 2025年第1期51-58,共8页
本文采用有限元仿真和试验验证相结合的方法,对芳纶纤维-蜂窝夹芯U形前缘结构的固化变形问题进行了研究。在仿真建模中,充分考虑了树脂的固化放热、热-力耦合以及化学收缩等,建立了U形前缘的固化温度场和固化变形场计算模型。在试验制备... 本文采用有限元仿真和试验验证相结合的方法,对芳纶纤维-蜂窝夹芯U形前缘结构的固化变形问题进行了研究。在仿真建模中,充分考虑了树脂的固化放热、热-力耦合以及化学收缩等,建立了U形前缘的固化温度场和固化变形场计算模型。在试验制备中,采用了预先固化外蒙皮,再与蜂窝芯、胶膜、发泡胶组合,最后铺放内蒙皮并再次胶接固化的成型工艺。结果显示,仿真模型预测的构件宽侧与窄侧的固化变形量与实际吻合度较高,可为后续前缘构件的模具修型提供指导和依据。 展开更多
关键词 固化成型 芳纶复合材料 蜂窝夹芯 U形前缘 有限元计算
下载PDF
多级蜂窝夹芯板结构的舱内爆炸动态响应研究
20
作者 殷子俊 郑成 +3 位作者 孔祥韶 周沪 卢安格 曹宇航 《舰船科学技术》 北大核心 2025年第2期80-87,共8页
本文旨在研究新型多级峰窝夹芯结构在舱内爆炸载荷下的动态响应与能量耗散机制。利用AUTODYN中Euler-Lagrange全耦合计算方法验证舱内爆炸计算模型的有效性,并对多级蜂窝夹芯结构的抗爆性能进行有限元分析,探究采用激光选区熔化技术3D... 本文旨在研究新型多级峰窝夹芯结构在舱内爆炸载荷下的动态响应与能量耗散机制。利用AUTODYN中Euler-Lagrange全耦合计算方法验证舱内爆炸计算模型的有效性,并对多级蜂窝夹芯结构的抗爆性能进行有限元分析,探究采用激光选区熔化技术3D打印制备的316 L夹芯层的吸能性,定量研究多级蜂窝夹芯结构各部分结构参数对其抗爆性能的影响规律。结果表明,多级蜂窝夹芯板在舱内爆炸载荷作用下变形过程可分3个阶段并且总结了其6种失效模式。随着上面板和二级蜂窝壁厚的提高,结构强度上升,下面板变形降低并且整体吸能减少。上面板增厚时,上、下面板吸能比例均下降;而二级蜂窝壁厚增大时,下面板吸能比例却上升。此外,芯层高度的增加有助于提升结构抗变形能力,下面板变形减小43.9%,但因易塑性压实,吸能潜力及整体稳定性减弱,总吸能下降19.2%。综上,多级蜂窝夹芯结构的抗爆抗冲击性能得到了明显改善,对抗爆结构的工程设计有一定指导意义。 展开更多
关键词 舱内爆炸 蜂窝夹芯结构 3D打印 抗爆抗冲击性能
下载PDF
上一页 1 2 202 下一页 到第
使用帮助 返回顶部