Introduction: Recently rapid development of drug resistant TB, particularly MDR TB (Multi Drug Resistant TB) and XDRTB (Extensively Drug-Resistant TB) possess a major threat to control of tuberculosis globally. I...Introduction: Recently rapid development of drug resistant TB, particularly MDR TB (Multi Drug Resistant TB) and XDRTB (Extensively Drug-Resistant TB) possess a major threat to control of tuberculosis globally. Information on the extent of MDR-TB from Kenya is largely limited due to several factors. Monitoring of development of resistance is a vital tool in providing critical information for effective planning for TB control and in management of patients infected with TB. Methods: Cross-sectional with cluster design. Results: A total of 2,171 participants recruited into the study from 50 selected clusters. Prevalence of rifampicin resistance for new cases was 1.3% [95% CI, 0.8-2.0] and INH resistance was 5.5% [95% CI, 4.5-6.7]. MDR TB was found in 0.67% of new cases and 2.1% amongst previously treated TB cases. Discussion: Resistance to isoniazid in Kenya has been on the decline due to introduction of rifampicin in combined therapy. There was increase of MDR TB among new cases by 24% and decline in previously treated cases due to lethal impact of HIV. Conclusions: Although drug resistance TB is a growing problem in Kenya, resistance to isoniazid and rifampicin MDR TB is less than previously estimated. The country should continue to monitor drug resistance and ensure effective use of anti TB medicines.展开更多
One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon o...One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.展开更多
Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a ty...Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a type of non-apoptotic cell death,is characterized by the accumulation of iron and the oxidation of lipids.Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells.Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance.Moreover,the gut,responsible for regulating iron absorption and release,could influence CRC susceptibility through iron metabolism modulation.Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management,potentially revolutionizing treatment approaches for therapy-resistant cancers.展开更多
Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory ca...Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.展开更多
Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,h...Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB.展开更多
Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of th...Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking.Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns.Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023–1.954;P=0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains.Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.展开更多
Hepatocellular carcinoma(HCC)is a malignancy known for its unfavorable prognosis.The dysregulation of the tumor microenvironment(TME)can affect the sensitivity to immunotherapy or chemotherapy,leading to treatment fai...Hepatocellular carcinoma(HCC)is a malignancy known for its unfavorable prognosis.The dysregulation of the tumor microenvironment(TME)can affect the sensitivity to immunotherapy or chemotherapy,leading to treatment failure.The elucidation of PHLDA2’s involvement in HCC is imperative,and the clinical value of PHLDA2 is also underestimated.Here,bioinformatics analysis was performed in multiple cohorts to explore the phenotype and mechanism through which PHLDA2 may affect the progression of HCC.Then,the expression and function of PHLDA2 were examined via the qRT-PCR,Western Blot,and MTT assays.Our findings indicate a substantial upregulation of PHLDA2 in HCC,correlated with a poorer prognosis.The methylation levels of PHLDA2 were found to be lower in HCC tissues compared to normal liver tissues.Besides,noteworthy associations were observed between PHLDA2 expression and immune infiltration in HCC.In addition,PHLDA2 upregulation is closely associated with stemness features and immunotherapy or chemotherapy resistance in HCC.In vitro experiments showed that sorafenib or cisplatin significantly up-regulated PHLDA2 mRNA levels,and PHLDA2 knockdown markedly decreased the sensitivity of HCC cells to chemotherapy drugs.Meanwhile,we found that TGF-βinduced the expression of PHLDA2 in vitro.The GSEA and in vitro experiment indicated that PHLDA2 may promote the HCC progression via activating the AKT signaling pathway.Our study revealed the novel role of PHLDA2 as an independent prognostic factor,which plays an essential role in TME remodeling and treatment resistance in HCC.展开更多
Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer tre...Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer treatments, via exacerbation of tumor hypoxia, decreased effective drug concentrations within tumors, and immune-related mechanisms. Antiangiogenic therapy can counteract these breast cancer resistance factors by promoting tumor vascular normalization. The combination of antiangiogenic therapy with chemotherapy, targeted therapy, or immunotherapy has emerged as a promising approach for overcoming drug resistance in breast cancer. This review examines the mechanisms associated with angiogenesis and the interactions among tumor angiogenesis, the hypoxic tumor microenvironment, drug distribution, and immune mechanisms in breast cancer. Furthermore, this review provides a comprehensive summary of specific antiangiogenic drugs, and relevant studies assessing the reversal of drug resistance in breast cancer. The potential mechanisms underlying these interventions are discussed, and prospects for the clinical application of antiangiogenic therapy to overcome breast cancer treatment resistance are highlighted.展开更多
Ovarian cancer is among the most lethal gynecological cancers,primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy.Drug resistance(DR)poses the most sign...Ovarian cancer is among the most lethal gynecological cancers,primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy.Drug resistance(DR)poses the most significant challenge in treating patients with existing drugs.The Food and Drug Administration(FDA)has recently approved three new therapeutic drugs,including two poly(ADP-ribose)polymerase(PARP)inhibitors(olaparib and niraparib)and one vascular endothelial growth factor(VEGF)inhibitor(bevacizumab)for maintenance therapy.However,resistance to these new drugs has emerged.Therefore,understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management.In this review,we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.展开更多
Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistanc...Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistance to protionamide (Pto). Methods: A total of 229 patients with MDR-TB and pre-XDR-TB diagnosed in the Eighth Affiliated Hospital of Xinjiang Medical University from January 2020 to February 2024 were selected to analyze the characteristics of katG and inhA mutations in MTB clinical isolates and their correlation with Pto resistance. Results: The mutation rate of katG (with or without inhA mutation) was 85.2%. The mutation rates in MDR-TB and pre-XDR-TB were 87.4% (125/143) and 81.4% (70/86), respectively. The mutation rate of inhA (including katG mutation) was 14.8% (34/229), which was 12.6% (18/143) and 18.6% (16/86) in MDR-TB and pre-XDR-MTB, respectively. There was no difference in mutation (P > 0.05). Conclusion: The total resistance rate to Pto in 229 strains was 8.7% (20/229), which was 8.4% (12/143) and 9.3% (8/86) in MDR-TB and pre-XDR-TB, respectively. Among the inhA mutant strains, 13 were resistant to the Pto phenotype, and the resistance rate was 65% (13/20). In MDR-TB and pre-XDR-TB strains resistant to Pto, inhA gene mutations occurred in 66.7% (6/9) and 63.6% (7/11), respectively. The resistance rates of MDR-MTB and pre-XDR-TB strains without inhA gene mutation to Pto were 2.4% (3/125) and 5.7% (4/70), respectively.展开更多
Background/objective: A nationwide survey on the resistance to first line anti-tuberculosis (anti-TB) drugs was conducted in Ghana from 2007-2008 by Noguchi Memorial Institute for Medical Research in collaboration wit...Background/objective: A nationwide survey on the resistance to first line anti-tuberculosis (anti-TB) drugs was conducted in Ghana from 2007-2008 by Noguchi Memorial Institute for Medical Research in collaboration with the National Tuberculosis Control Programme. We aimed to characterize mycobacterial species causing pulmonary tuberculosis (PTB) and determine the resistance pattern to first line anti-TB drugs among newly diagnosed and previously treated PTB patients in Ghana. Methods: Two sputum samples from consented new smear positive PTB patients who had never been treated for TB or had been on anti-TB treatment for less than a month and patients who had been treated for TB previously for more than a month in selected diagnostic centres nationwide were collected for culture, identification and drug susceptibility test. Culture positive isolates were tested against streptomycin (S), isoniazid (H), rifampicin (R) and ethambutol (E) using the simplified proportion method and line probe assay (LPA). The LPA was performed in mid-2017. Results: Among 410 samples, 345 positive cultures were obtained and identified as Mycobacterium tuberculosis complex (MTBC). Of the 345 isolates, 133 were further differentiated by GenoType MTBC®as M. tuberculosis, 126 (94.7%) and M. africanum 7 (5.3%). The overall drug resistance patterns were as follows: 43/345 (12.5%), 6/345 (1.7%), 9/345 (2.6%) and 71/345 (20.6%) were resistant to H, R, E and S respectively and 5/345 (1.4%) were multi-drug resistant (MDR). Conclusion: The results indicate high levels of resistance to S and H among new and previously treated TB patients. We recommend adequate surveillance systems including periodic national anti-TB drug resistance surveys.展开更多
Introduction: Tuberculosis is a major cause of mortality and morbidity world-wide. Anti-tuberculosis drugs have been used for many decades but resistance to them is now widespread. Globally 5% of tuberculosis cases an...Introduction: Tuberculosis is a major cause of mortality and morbidity world-wide. Anti-tuberculosis drugs have been used for many decades but resistance to them is now widespread. Globally 5% of tuberculosis cases and in India 3% among new TB cases. This study was planned to know the pattern of first line anti-tuberculosis drug resistance in south Gujarat, Surat region in newly diagnosed patients of tuberculosis. Material and Methods: 350 samples were processed for homogenisation and concentration using 4% NAOH-2.9% trisodium citrate. Processed samples were inoculated in liquid medium that is MGIT (Mycobacterial growth indicator tube). Positive samples for M. tbwere processed further for first line anti-tuberculosis drugs sensitivity testing (DST). Reading was taken by using MicroMGIT system. Result: Out of 350 samples 59 (17%) were positive samples, of which 48 (13%) were M. tb and 11 (3%) were non tuberculous mycobacteria. Out of 48 samples 2% (1 isolate) was resistant to isoniazid and Rifampicin while 2% were monoresistant to isoniazide, 2% monoresistant to streptomycin. No rifampicin monoresistant was detected. Conclusion: Such study may help in control of tuberculosis at regional and national level which would in turn help in planning of measures to control Multi-drug resistance tuberculosis. Continuous surveillance should be applied to know the periodic changing patterns and trend in Drug resistant tuberculosis.展开更多
Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent p...Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent problem that needs continuous attention by scientists, medical professionals, and government agencies. To solve the problem, an in-depth understanding of the intricate interplay between causes of antiviral drug resistance and potential new drugs specifically natural products is imperative in the interest and safety of public health. This review delves into natural product as reservoir for antiviral agents with the peculiar potentials for addressing the complexities associated with multi-drug resistant and emerging viral strains. An evaluation of the mechanisms underlying antiviral drug activity, antiviral drug resistance is addressed, with emphasis on production of broad-spectrum antiviral agents from natural sources. There is a need for continued natural product-based research, identification of new species and novel compounds.展开更多
Gastric cancer is one of the most prevalent cancers worldwide,and human epidermal growth factor receptor 2(HER2)-positive cases account for approximately 20%of the total cases.Currently,trastuzumab+chemotherapy is the...Gastric cancer is one of the most prevalent cancers worldwide,and human epidermal growth factor receptor 2(HER2)-positive cases account for approximately 20%of the total cases.Currently,trastuzumab+chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer,and the combination has exhibited definite efficacy in HER2-targeted therapy.However,the emergence of drug resistance during treatment considerably reduces its effectiveness;thus,it is imperative to investigate the potential mechanisms underlying resistance.In the present review article,we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases,aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.展开更多
BACKGROUND Helicobacter pylori(HP),the most common pathogenic microorganism in stomach,can induce inflammatory reactions in the gastric mucosa,causing chronic gastritis and even gastric cancer.HP infection affects ove...BACKGROUND Helicobacter pylori(HP),the most common pathogenic microorganism in stomach,can induce inflammatory reactions in the gastric mucosa,causing chronic gastritis and even gastric cancer.HP infection affects over 4.4 billion people globally,with a worldwide infection rate of up to 50%.The multidrug resistance of HP poses a serious challenge to eradication.It has been monstrated that compared to bismuth quadruple therapy,Qingre Huashi decoction(QHD)combined with triple therapy exhibits comparable eradication rates but with a lower incidence of adverse reactions;in addition,QHD directly inhibit and kill HP in vitro.METHODS In this study,12 HP strains were isolated in vitro after biopsy during gastroscopy of HP-infected patients.In vitro,the minimum inhibitory concentration(MIC)values for clinical HP strains and biofilm quantification were determined through the E-test method and crystal violet staining,respectively.The most robust biofilm-forming strain of HP was selected,and QHD was evaluated for its inhibitory and bactericidal effects on the strain with strong biofilm formation.This assessment was performed using agar dilution,E-test,killing dynamics,and transmission electron microscopy(TEM).The study also explored the impact of QHD on antibiotic resistance in these HP strains with strong biofilm formation.Crystalline violet method,scanning electron microscopy,laser confocal scanning microscopy,and(p)ppGpp chromatographic identification were employed to evaluate the effect of QHD on biofilm in strong biofilm-forming HP strains.The effect of QHD on biofilm and efflux pump-related gene expression was evaluated by quantitative polymerase chain reaction.Non-targeted metabolomics with UHPLC-MS/MS was used to identify potential metabolic pathways and biomarkers which were different between the NC and QHD groups.RESULTS HP could form biofilms of different degrees in vitro,and the intensity of formation was associated with the drug resistance of the strain.QHD had strong bacteriostatic and bactericidal effects on HP,with MICs of 32-64 mg/mL.QHD could inhibit the biofilm formation of the strong biofilm-forming HP strains,disrupt the biofilm structure,lower the accumulation of(p)ppGpp,decrease the expression of biofilm-related genes including LuxS,Spot,glup(HP1174),NapA,and CagE,and reduce the expression of efflux pump-related genes such as HP0605,HP0971,HP1327,and HP1489.Based on metabolomic analysis,QHD induced oxidative stress in HP,enhanced metabolism,and potentially inhibited relevant signaling pathways by upregulating adenosine monophosphate(AMP),thereby affecting HP growth,metabolism,and protein synthesis.CONCLUSION QHD exerts bacteriostatic and bactericidal effects on HP,and reduces HP drug resistance by inhibiting HP biofilm formation,destroying its biofilm structure,inhibiting the expression of biofilm-related genes and efflux pump-related genes,enhancing HP metabolism,and activating AMP in HP.展开更多
Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, hos...Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.展开更多
Multiple myeloma(MM)is a hematological tumor with high mortality and recurrence rate.Carfilzomib is a new-generation proteasome inhibitor that is used as the first-line therapy for MM.However,the development of drug r...Multiple myeloma(MM)is a hematological tumor with high mortality and recurrence rate.Carfilzomib is a new-generation proteasome inhibitor that is used as the first-line therapy for MM.However,the development of drug resistance is a pervasive obstacle to treating MM.Therefore,elucidating the drug resistance mechanisms is conducive to the formulation of novel therapeutic therapies.To elucidate the mechanisms of carfilzomib resistance,we retrieved the GSE78069 microarray dataset containing carfilzomib-resistant LP-1 MM cells and parental MM cells.Differential gene expression analyses revealed major alterations in the major histocompatibility complex(MHC)and cell adhesion molecules.The upregulation of the tumor necrosis factor(TNF)receptor superfamily member 1A(TNFRSF1A)gene was accompanied by the downregulation of MHC genes and cell adhesion molecules.Furthermore,to investigate the roles of these genes,we established a carfilzomib-resistant cell model and observed that carfilzomib resistance induced TNFRSF1A overexpression and TNFRSF1A silencing reversed carfilzomib resistance and reactivated the expression of cell adhesion molecules.Furthermore,TNFRSF1A silencing suppressed the tumorigenesis of MM cells in immunocompetent mice,indicating that TNFRSF1A may lead to carfilzomib resistance by dampening antitumor immunity.Furthermore,our results indicated that TNFRSF1A overexpression conferred carfilzomib resistance in MM cells and suppressed the expression of MHC genes and cell adhesion molecules.The suppression of MHC genes and cell adhesion molecules may impair the interaction between immune cells and cancer cells to impair antitumor immunity.Future studies are warranted to further investigate the signaling pathway underlying the regulatory role of TNFRSF1A in MM cells.展开更多
Objective To identify nivolumab resistance-related genes in patients with head and neck squamous cell carcinoma(HNSCC)using single-cell and bulk RNA-sequencing data.Methods The single-cell and bulk RNA-sequencing data...Objective To identify nivolumab resistance-related genes in patients with head and neck squamous cell carcinoma(HNSCC)using single-cell and bulk RNA-sequencing data.Methods The single-cell and bulk RNA-sequencing data downloaded from the Gene Expression Omnibus database were analyzed to screen out differentially expressed genes(DEGs)between nivolumab resistant and nivolumab sensitive patients using R software.The Least Absolute Shrinkage Selection Operator(LASSO)regression and Recursive Feature Elimination(RFE)algorithm were performed to identify key genes associated with nivolumab resistance.Functional enrichment of DEGs was analyzed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses.The relationships of key genes with immune cell infiltration,differentation trajectory,dynamic gene expression profiles,and ligand-receptor interaction were explored.Results We found 83 DEGs.They were mainly enriched in T-cell differentiation,PD-1 and PD-L1 checkpoint,and T-cell receptor pathways.Among six key genes identified using machine learning algorithms,only PPP1R14A gene was differentially expressed between the nivolumab resistant and nivolumab sensitive groups both before and after immunotherapy(P<0.05).The high PPP1R14A gene expression group had lower immune score(P<0.01),higher expression of immunosuppressive factors(such as PDCD1,CTLA4,and PDCD1LG2)(r>0,P<0.05),lower differentiation of infiltrated immune cells(P<0.05),and a higher degree of interaction between HLA and CD4(P<0.05).Conclusions PPP1R14A gene is closely associated with resistance to nivolumab in HNSCC patients.Therefore,PPP1R14A may be a target to ameliorate nivolumab resistance of HNSCC patients.展开更多
Erythropoietin-induced hepatocyte receptor A2(EphA2)is a receptor tyrosine kinase that plays a key role in the development and progression of a variety of tumors.This article reviews the expression of EphA2 in gastroi...Erythropoietin-induced hepatocyte receptor A2(EphA2)is a receptor tyrosine kinase that plays a key role in the development and progression of a variety of tumors.This article reviews the expression of EphA2 in gastrointestinal(GI)colorectal cancer(CRC)and its regulation of pyroptosis.Pyroptosis is a form of programmed cell death that plays an important role in tumor suppression.Studies have shown that EphA2 regulates pyrodeath through various signaling pathways,affecting the occurrence,development and metastasis of GI CRC.The overexpression of EphA2 is closely related to the aggressiveness and metastasis of GI CRC,and the inhibition of EphA2 can induce pyrodeath and improve the sensitivity of cancer cells to treatment.In addition,EphA2 regulates intercellular communication and the microenvironment through interactions with other cytokines and receptors,further influencing cancer progression.The role of EphA2 in GI CRC and its underlying mechanisms provide us with new perspectives and potential therapeutic targets,which have important implications for future cancer treatment.展开更多
Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advance...Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.展开更多
文摘Introduction: Recently rapid development of drug resistant TB, particularly MDR TB (Multi Drug Resistant TB) and XDRTB (Extensively Drug-Resistant TB) possess a major threat to control of tuberculosis globally. Information on the extent of MDR-TB from Kenya is largely limited due to several factors. Monitoring of development of resistance is a vital tool in providing critical information for effective planning for TB control and in management of patients infected with TB. Methods: Cross-sectional with cluster design. Results: A total of 2,171 participants recruited into the study from 50 selected clusters. Prevalence of rifampicin resistance for new cases was 1.3% [95% CI, 0.8-2.0] and INH resistance was 5.5% [95% CI, 4.5-6.7]. MDR TB was found in 0.67% of new cases and 2.1% amongst previously treated TB cases. Discussion: Resistance to isoniazid in Kenya has been on the decline due to introduction of rifampicin in combined therapy. There was increase of MDR TB among new cases by 24% and decline in previously treated cases due to lethal impact of HIV. Conclusions: Although drug resistance TB is a growing problem in Kenya, resistance to isoniazid and rifampicin MDR TB is less than previously estimated. The country should continue to monitor drug resistance and ensure effective use of anti TB medicines.
文摘One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.
文摘Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a type of non-apoptotic cell death,is characterized by the accumulation of iron and the oxidation of lipids.Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells.Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance.Moreover,the gut,responsible for regulating iron absorption and release,could influence CRC susceptibility through iron metabolism modulation.Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management,potentially revolutionizing treatment approaches for therapy-resistant cancers.
基金supported by the National Natural Science Foundation of China(11871238,11931019,12371486)。
文摘Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.
文摘Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB.
基金funded by the National Key R&D Program of China [2022YFC2305200]Natural Science Foundation of Xinjiang Uygur Autonomous Region [2021A01D145 and 2022D01A115]Applied Technology Research and Development Programing Project of Kashgar Prefecture [KS2021031 and KS2021034]。
文摘Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking.Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns.Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023–1.954;P=0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains.Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.
基金supported by the National Natural Science Foundation of China(Nos.81872255,62141109)the Leading-Edge Technology Programme of Jiangsu Natural Science Foundation:BK20212021.
文摘Hepatocellular carcinoma(HCC)is a malignancy known for its unfavorable prognosis.The dysregulation of the tumor microenvironment(TME)can affect the sensitivity to immunotherapy or chemotherapy,leading to treatment failure.The elucidation of PHLDA2’s involvement in HCC is imperative,and the clinical value of PHLDA2 is also underestimated.Here,bioinformatics analysis was performed in multiple cohorts to explore the phenotype and mechanism through which PHLDA2 may affect the progression of HCC.Then,the expression and function of PHLDA2 were examined via the qRT-PCR,Western Blot,and MTT assays.Our findings indicate a substantial upregulation of PHLDA2 in HCC,correlated with a poorer prognosis.The methylation levels of PHLDA2 were found to be lower in HCC tissues compared to normal liver tissues.Besides,noteworthy associations were observed between PHLDA2 expression and immune infiltration in HCC.In addition,PHLDA2 upregulation is closely associated with stemness features and immunotherapy or chemotherapy resistance in HCC.In vitro experiments showed that sorafenib or cisplatin significantly up-regulated PHLDA2 mRNA levels,and PHLDA2 knockdown markedly decreased the sensitivity of HCC cells to chemotherapy drugs.Meanwhile,we found that TGF-βinduced the expression of PHLDA2 in vitro.The GSEA and in vitro experiment indicated that PHLDA2 may promote the HCC progression via activating the AKT signaling pathway.Our study revealed the novel role of PHLDA2 as an independent prognostic factor,which plays an essential role in TME remodeling and treatment resistance in HCC.
基金supported by the National Natural Science Foundation of China (Grant No. 81973861)Zhejiang Provincial Ministry Medical and Health Co-construction Major Project (Grant No. 20214355173)+2 种基金Zhejiang Science and Technology Department“Vanguard”“Leading Goose”research (Grant No. 2023C03044)Zhejiang Provincial Health“Leading Talents”ProjectZhejiang Medical and Health Science and Technology Project (Grant No. 2022KY558)。
文摘Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer treatments, via exacerbation of tumor hypoxia, decreased effective drug concentrations within tumors, and immune-related mechanisms. Antiangiogenic therapy can counteract these breast cancer resistance factors by promoting tumor vascular normalization. The combination of antiangiogenic therapy with chemotherapy, targeted therapy, or immunotherapy has emerged as a promising approach for overcoming drug resistance in breast cancer. This review examines the mechanisms associated with angiogenesis and the interactions among tumor angiogenesis, the hypoxic tumor microenvironment, drug distribution, and immune mechanisms in breast cancer. Furthermore, this review provides a comprehensive summary of specific antiangiogenic drugs, and relevant studies assessing the reversal of drug resistance in breast cancer. The potential mechanisms underlying these interventions are discussed, and prospects for the clinical application of antiangiogenic therapy to overcome breast cancer treatment resistance are highlighted.
基金This study received support for Open Access Publikationskosten from the DFG.
文摘Ovarian cancer is among the most lethal gynecological cancers,primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy.Drug resistance(DR)poses the most significant challenge in treating patients with existing drugs.The Food and Drug Administration(FDA)has recently approved three new therapeutic drugs,including two poly(ADP-ribose)polymerase(PARP)inhibitors(olaparib and niraparib)and one vascular endothelial growth factor(VEGF)inhibitor(bevacizumab)for maintenance therapy.However,resistance to these new drugs has emerged.Therefore,understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management.In this review,we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.
基金Study on the Correlation Between inhA Gene Mutation of Multidrug-Resistant MTB and Resistance to Protionamide (Project number: 2022013)。
文摘Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistance to protionamide (Pto). Methods: A total of 229 patients with MDR-TB and pre-XDR-TB diagnosed in the Eighth Affiliated Hospital of Xinjiang Medical University from January 2020 to February 2024 were selected to analyze the characteristics of katG and inhA mutations in MTB clinical isolates and their correlation with Pto resistance. Results: The mutation rate of katG (with or without inhA mutation) was 85.2%. The mutation rates in MDR-TB and pre-XDR-TB were 87.4% (125/143) and 81.4% (70/86), respectively. The mutation rate of inhA (including katG mutation) was 14.8% (34/229), which was 12.6% (18/143) and 18.6% (16/86) in MDR-TB and pre-XDR-MTB, respectively. There was no difference in mutation (P > 0.05). Conclusion: The total resistance rate to Pto in 229 strains was 8.7% (20/229), which was 8.4% (12/143) and 9.3% (8/86) in MDR-TB and pre-XDR-TB, respectively. Among the inhA mutant strains, 13 were resistant to the Pto phenotype, and the resistance rate was 65% (13/20). In MDR-TB and pre-XDR-TB strains resistant to Pto, inhA gene mutations occurred in 66.7% (6/9) and 63.6% (7/11), respectively. The resistance rates of MDR-MTB and pre-XDR-TB strains without inhA gene mutation to Pto were 2.4% (3/125) and 5.7% (4/70), respectively.
文摘Background/objective: A nationwide survey on the resistance to first line anti-tuberculosis (anti-TB) drugs was conducted in Ghana from 2007-2008 by Noguchi Memorial Institute for Medical Research in collaboration with the National Tuberculosis Control Programme. We aimed to characterize mycobacterial species causing pulmonary tuberculosis (PTB) and determine the resistance pattern to first line anti-TB drugs among newly diagnosed and previously treated PTB patients in Ghana. Methods: Two sputum samples from consented new smear positive PTB patients who had never been treated for TB or had been on anti-TB treatment for less than a month and patients who had been treated for TB previously for more than a month in selected diagnostic centres nationwide were collected for culture, identification and drug susceptibility test. Culture positive isolates were tested against streptomycin (S), isoniazid (H), rifampicin (R) and ethambutol (E) using the simplified proportion method and line probe assay (LPA). The LPA was performed in mid-2017. Results: Among 410 samples, 345 positive cultures were obtained and identified as Mycobacterium tuberculosis complex (MTBC). Of the 345 isolates, 133 were further differentiated by GenoType MTBC®as M. tuberculosis, 126 (94.7%) and M. africanum 7 (5.3%). The overall drug resistance patterns were as follows: 43/345 (12.5%), 6/345 (1.7%), 9/345 (2.6%) and 71/345 (20.6%) were resistant to H, R, E and S respectively and 5/345 (1.4%) were multi-drug resistant (MDR). Conclusion: The results indicate high levels of resistance to S and H among new and previously treated TB patients. We recommend adequate surveillance systems including periodic national anti-TB drug resistance surveys.
文摘Introduction: Tuberculosis is a major cause of mortality and morbidity world-wide. Anti-tuberculosis drugs have been used for many decades but resistance to them is now widespread. Globally 5% of tuberculosis cases and in India 3% among new TB cases. This study was planned to know the pattern of first line anti-tuberculosis drug resistance in south Gujarat, Surat region in newly diagnosed patients of tuberculosis. Material and Methods: 350 samples were processed for homogenisation and concentration using 4% NAOH-2.9% trisodium citrate. Processed samples were inoculated in liquid medium that is MGIT (Mycobacterial growth indicator tube). Positive samples for M. tbwere processed further for first line anti-tuberculosis drugs sensitivity testing (DST). Reading was taken by using MicroMGIT system. Result: Out of 350 samples 59 (17%) were positive samples, of which 48 (13%) were M. tb and 11 (3%) were non tuberculous mycobacteria. Out of 48 samples 2% (1 isolate) was resistant to isoniazid and Rifampicin while 2% were monoresistant to isoniazide, 2% monoresistant to streptomycin. No rifampicin monoresistant was detected. Conclusion: Such study may help in control of tuberculosis at regional and national level which would in turn help in planning of measures to control Multi-drug resistance tuberculosis. Continuous surveillance should be applied to know the periodic changing patterns and trend in Drug resistant tuberculosis.
文摘Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent problem that needs continuous attention by scientists, medical professionals, and government agencies. To solve the problem, an in-depth understanding of the intricate interplay between causes of antiviral drug resistance and potential new drugs specifically natural products is imperative in the interest and safety of public health. This review delves into natural product as reservoir for antiviral agents with the peculiar potentials for addressing the complexities associated with multi-drug resistant and emerging viral strains. An evaluation of the mechanisms underlying antiviral drug activity, antiviral drug resistance is addressed, with emphasis on production of broad-spectrum antiviral agents from natural sources. There is a need for continued natural product-based research, identification of new species and novel compounds.
基金supported by the Project of Henan Provincial Medical Science and Technology Research Plan(No.SBGJ202301004 and No.LHGJ20210186)the Key Science Fund project of Henan Provincial Natural Science Foundation(No.232300421119).
文摘Gastric cancer is one of the most prevalent cancers worldwide,and human epidermal growth factor receptor 2(HER2)-positive cases account for approximately 20%of the total cases.Currently,trastuzumab+chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer,and the combination has exhibited definite efficacy in HER2-targeted therapy.However,the emergence of drug resistance during treatment considerably reduces its effectiveness;thus,it is imperative to investigate the potential mechanisms underlying resistance.In the present review article,we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases,aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.
基金Supported by the National Natural Science Foundation of China,No.81973615 and No.82304930Natural Science Foundation of Beijing,No.7332323Capital’s Funds for Health Improvement and Research,No.CF2022-2-40711.
文摘BACKGROUND Helicobacter pylori(HP),the most common pathogenic microorganism in stomach,can induce inflammatory reactions in the gastric mucosa,causing chronic gastritis and even gastric cancer.HP infection affects over 4.4 billion people globally,with a worldwide infection rate of up to 50%.The multidrug resistance of HP poses a serious challenge to eradication.It has been monstrated that compared to bismuth quadruple therapy,Qingre Huashi decoction(QHD)combined with triple therapy exhibits comparable eradication rates but with a lower incidence of adverse reactions;in addition,QHD directly inhibit and kill HP in vitro.METHODS In this study,12 HP strains were isolated in vitro after biopsy during gastroscopy of HP-infected patients.In vitro,the minimum inhibitory concentration(MIC)values for clinical HP strains and biofilm quantification were determined through the E-test method and crystal violet staining,respectively.The most robust biofilm-forming strain of HP was selected,and QHD was evaluated for its inhibitory and bactericidal effects on the strain with strong biofilm formation.This assessment was performed using agar dilution,E-test,killing dynamics,and transmission electron microscopy(TEM).The study also explored the impact of QHD on antibiotic resistance in these HP strains with strong biofilm formation.Crystalline violet method,scanning electron microscopy,laser confocal scanning microscopy,and(p)ppGpp chromatographic identification were employed to evaluate the effect of QHD on biofilm in strong biofilm-forming HP strains.The effect of QHD on biofilm and efflux pump-related gene expression was evaluated by quantitative polymerase chain reaction.Non-targeted metabolomics with UHPLC-MS/MS was used to identify potential metabolic pathways and biomarkers which were different between the NC and QHD groups.RESULTS HP could form biofilms of different degrees in vitro,and the intensity of formation was associated with the drug resistance of the strain.QHD had strong bacteriostatic and bactericidal effects on HP,with MICs of 32-64 mg/mL.QHD could inhibit the biofilm formation of the strong biofilm-forming HP strains,disrupt the biofilm structure,lower the accumulation of(p)ppGpp,decrease the expression of biofilm-related genes including LuxS,Spot,glup(HP1174),NapA,and CagE,and reduce the expression of efflux pump-related genes such as HP0605,HP0971,HP1327,and HP1489.Based on metabolomic analysis,QHD induced oxidative stress in HP,enhanced metabolism,and potentially inhibited relevant signaling pathways by upregulating adenosine monophosphate(AMP),thereby affecting HP growth,metabolism,and protein synthesis.CONCLUSION QHD exerts bacteriostatic and bactericidal effects on HP,and reduces HP drug resistance by inhibiting HP biofilm formation,destroying its biofilm structure,inhibiting the expression of biofilm-related genes and efflux pump-related genes,enhancing HP metabolism,and activating AMP in HP.
文摘Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.
基金Research Projects-Joint Fund for Applied Basic Research of Kunming Medical University,Yunnan Provincial Department of Science and Technology(No.2018FE001(-113),No.202301AY070001-098)Open project of Yunnan Clinical Medical Center(Nos.2020LCZXKF-XY02,XY06,XY16+1 种基金2022LCZXKF-XY02)Yunnan Health Training Project of High Level Talents(No.D–2018018).
文摘Multiple myeloma(MM)is a hematological tumor with high mortality and recurrence rate.Carfilzomib is a new-generation proteasome inhibitor that is used as the first-line therapy for MM.However,the development of drug resistance is a pervasive obstacle to treating MM.Therefore,elucidating the drug resistance mechanisms is conducive to the formulation of novel therapeutic therapies.To elucidate the mechanisms of carfilzomib resistance,we retrieved the GSE78069 microarray dataset containing carfilzomib-resistant LP-1 MM cells and parental MM cells.Differential gene expression analyses revealed major alterations in the major histocompatibility complex(MHC)and cell adhesion molecules.The upregulation of the tumor necrosis factor(TNF)receptor superfamily member 1A(TNFRSF1A)gene was accompanied by the downregulation of MHC genes and cell adhesion molecules.Furthermore,to investigate the roles of these genes,we established a carfilzomib-resistant cell model and observed that carfilzomib resistance induced TNFRSF1A overexpression and TNFRSF1A silencing reversed carfilzomib resistance and reactivated the expression of cell adhesion molecules.Furthermore,TNFRSF1A silencing suppressed the tumorigenesis of MM cells in immunocompetent mice,indicating that TNFRSF1A may lead to carfilzomib resistance by dampening antitumor immunity.Furthermore,our results indicated that TNFRSF1A overexpression conferred carfilzomib resistance in MM cells and suppressed the expression of MHC genes and cell adhesion molecules.The suppression of MHC genes and cell adhesion molecules may impair the interaction between immune cells and cancer cells to impair antitumor immunity.Future studies are warranted to further investigate the signaling pathway underlying the regulatory role of TNFRSF1A in MM cells.
基金supported by the National Innovation and Enterpreneurship Training Program for College Students(202210367002)the Key Laboratory Open Project of An-hui Province(AHCM2022Z004).
文摘Objective To identify nivolumab resistance-related genes in patients with head and neck squamous cell carcinoma(HNSCC)using single-cell and bulk RNA-sequencing data.Methods The single-cell and bulk RNA-sequencing data downloaded from the Gene Expression Omnibus database were analyzed to screen out differentially expressed genes(DEGs)between nivolumab resistant and nivolumab sensitive patients using R software.The Least Absolute Shrinkage Selection Operator(LASSO)regression and Recursive Feature Elimination(RFE)algorithm were performed to identify key genes associated with nivolumab resistance.Functional enrichment of DEGs was analyzed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses.The relationships of key genes with immune cell infiltration,differentation trajectory,dynamic gene expression profiles,and ligand-receptor interaction were explored.Results We found 83 DEGs.They were mainly enriched in T-cell differentiation,PD-1 and PD-L1 checkpoint,and T-cell receptor pathways.Among six key genes identified using machine learning algorithms,only PPP1R14A gene was differentially expressed between the nivolumab resistant and nivolumab sensitive groups both before and after immunotherapy(P<0.05).The high PPP1R14A gene expression group had lower immune score(P<0.01),higher expression of immunosuppressive factors(such as PDCD1,CTLA4,and PDCD1LG2)(r>0,P<0.05),lower differentiation of infiltrated immune cells(P<0.05),and a higher degree of interaction between HLA and CD4(P<0.05).Conclusions PPP1R14A gene is closely associated with resistance to nivolumab in HNSCC patients.Therefore,PPP1R14A may be a target to ameliorate nivolumab resistance of HNSCC patients.
基金Scientific Research Nurturing Fund of the First Affiliated Hospital of Shandong First Medical University&Shandong Provincial Qianfoshan Hospital,No.QYPY2020NSFC0609.
文摘Erythropoietin-induced hepatocyte receptor A2(EphA2)is a receptor tyrosine kinase that plays a key role in the development and progression of a variety of tumors.This article reviews the expression of EphA2 in gastrointestinal(GI)colorectal cancer(CRC)and its regulation of pyroptosis.Pyroptosis is a form of programmed cell death that plays an important role in tumor suppression.Studies have shown that EphA2 regulates pyrodeath through various signaling pathways,affecting the occurrence,development and metastasis of GI CRC.The overexpression of EphA2 is closely related to the aggressiveness and metastasis of GI CRC,and the inhibition of EphA2 can induce pyrodeath and improve the sensitivity of cancer cells to treatment.In addition,EphA2 regulates intercellular communication and the microenvironment through interactions with other cytokines and receptors,further influencing cancer progression.The role of EphA2 in GI CRC and its underlying mechanisms provide us with new perspectives and potential therapeutic targets,which have important implications for future cancer treatment.
基金Natural Science Foundation of Gansu Province,No.21JR1RA186and the Health Industry Research Program of Gansu Province,No.GSWSKY2021-043.
文摘Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.