期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Test analysis on relationship between anti-vibration performanceand chaos characteristics of vehicle suspension
1
作者 张雨 任成龙 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期64-68,共5页
Based on the primary principle of anti-vibration on vehicles, a chaos description on the vibration in suspensions is put forward. The vibration curve of the suspensions of test vehicles is obtained based on the data f... Based on the primary principle of anti-vibration on vehicles, a chaos description on the vibration in suspensions is put forward. The vibration curve of the suspensions of test vehicles is obtained based on the data from a test rig for vehicle braking vs. suspension anti-vibration efficiency. The system parameters such as first inherent frequency and damp rate, as well as the chaos parameters such as the minimum embedding dimension and correlation dimension, are calculated by the vibration curve. The relationship among anti-vibration performance, chaos parameters and system parameters of vehicle suspension is presented. The research results show that the minimum embedding dimension Mmin can be used to estimate the change of the anti-vibration performance of the front suspension of the off-road jeep. The smaller Min is, the worse anti-vibration performance is. The corresponding stiffness and damp of the front suspension of the off-road jeep is smaller. Correlation dimension D2 can be used to identify different suspension types such as those of the off-road jeep and the car. The D2 of the off-road jeep is larger than the one of the car. 展开更多
关键词 VEHICLE SUSPENSION anti-vibration CHAOS
下载PDF
Vibration isolation performance analysis of a bilateral supported bio-inspired anti-vibration control system
2
作者 Shihua ZHOU Dongsheng ZHANG +1 位作者 Bowen HOU Zhaohui REN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第5期759-772,共14页
To achieve better anti-vibration performance in a low frequency region and expand the range of vibration isolation,a bilateral supported bio-inspired anti-vibration(BBAV)structure composed of purely linear elements is... To achieve better anti-vibration performance in a low frequency region and expand the range of vibration isolation,a bilateral supported bio-inspired anti-vibration(BBAV)structure composed of purely linear elements is proposed,inspired by the motion form of bird legs and the nonlinear extension and compression of muscles and tendons.The kinematic relations and nonlinear dynamic model considering vertical and rotational vibrations are established.The loading capacity and equivalent stiffness are investigated with key parameters.The amplitude-frequency characteristics and force transmissibility are used to evaluate the stability and anti-vibration performance with the effects of the excitation amplitude,rod length,installation angle,and spring stiffness.The results show that the loading requirements and resonant characteristics of the BBAV structure are adjustable,and superior vibration isolation performance can be achieved readily by tuning the parameters.The X-shaped vibration structure is sensitive to the spring stiffness,which exhibits a wider vibration isolation bandwidth with smaller spring stiffness.Besides,depending on the parameters,the nonlinear behavior of the BBAV system can be interconverted between the softening type and the hardening type.The theoretical analysis in this study demonstrates the advantages and effectiveness of the vibration isolation structure. 展开更多
关键词 bio-inspired X-shaped structure anti-vibration performance force transmissibility loading capacity amplitude-frequency curve
下载PDF
Research on Breeze Vibration Law and Modal Identification Method of Conductor Considering Anti-Vibration Hammer Damage
3
作者 Long Zhao Xudong Lu +2 位作者 Xinbo Huang Hao Yang Guoze Feng 《Structural Durability & Health Monitoring》 EI 2023年第4期283-297,共15页
In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-v... In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-vibration hammer is rigidly attached to the conductor,effectively suppressing conductor vibration.The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure.Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage,which to obtained the vibration acceleration signal of the conductor.The acceleration vibration signal is processed and analyzed in the time and frequency domains.The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology.The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage.The natural frequency increases for each order,with an absolute change ranging from 0.15 to 6.49 Hz.The anti-vibration hammer slipped due to a loose connection,the 1st natural frequency increases from 8.18 to 16.62 Hz.Therefore,in engineering applications,there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor.This is even a tiny damage that cannot be seen.This method will prevent the further expansion of the damage that can cause accidents. 展开更多
关键词 Transmission line conductor anti-vibration hammer breeze vibration modal parameter vibration characteristic
下载PDF
A Magnetically Levitated Precise Pointing Mechanism for Application to Optical Communication Terminals 被引量:1
4
作者 Thomas Edward Donaldson Frame Alexandre Alexandre Pechev 《Optics and Photonics Journal》 2012年第2期85-97,共13页
Increasing data bandwidth requirements from spacecraft systems is beginning to pressure existing microwave communications systems. Free-Space optical communications allows for larger bandwidths for lower relative powe... Increasing data bandwidth requirements from spacecraft systems is beginning to pressure existing microwave communications systems. Free-Space optical communications allows for larger bandwidths for lower relative power consumption, smaller size and weight when compared to the microwave equivalent. However optical communication does have a formidable challenge that needs to be overcome before the advantages of the technology can be fully utilized. In order for the communication to be successful the transmitter and receiver terminals need to be pointed with a high accuracy (generally in the order of ≤10 μradians) for the duration of communication. In this paper we present a new concept for the precise pointing of optical communications terminals (termed the Precise Pointing Mechanism). In this new concept we combine the separate pointing mechanisms of a conventional optical terminal into a single mechanism, reducing the complexity and cost of the optical bench. This is achieved by electromagnetically actuating the whole telescope assembly in 6 degrees-of-freedom with an angular resolution of less than ±3 μradians within a 10 (Az. El.) field of view and linear resolution of ±2 μm. This paper presents the new pointing mechanism and discusses the modelling, simulation and experimental work undertaken using the bespoke engineering model developed. 展开更多
关键词 Optical COMMUNICATIONS Magnetic LEVITATION Control POINTING Active anti-vibration
下载PDF
Design and experiment of anti-vibrating and anti-wrapping rotary components for subsoiler cum rotary tiller 被引量:4
5
作者 Kan Zheng Allen D.McHugh +7 位作者 Hongwen Li Qingjie Wang Caiyun Lu Hongnan Hu Wenzheng Liu Zhiqiang Zhang Peng Liu Jin He 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第4期47-55,共9页
The commonly used subsoiling cum rotary tiller machine(SRT)in Northern China is a combination of subsoiler and horizontal rotary tiller,however backfilling of the subsoiling slot,excessive vibration and plant residue ... The commonly used subsoiling cum rotary tiller machine(SRT)in Northern China is a combination of subsoiler and horizontal rotary tiller,however backfilling of the subsoiling slot,excessive vibration and plant residue wrapping on rotary components has been rarely considered.Therefore,the rotary components and assembly were redesigned to address these issues and to an SRT fitted with IT225 short curve rotary blades behind the V-shape subsoiling slots and IIT245 long curve rotary blades between the tines.Long and short blades were fitted on a rotor in a double helix,with optimal spiral angles of 65° and 90°,and phase angle of 147°and 180°,respectively.Compared with the commonly used SRT(CSRT),the additional anti-wrapping cutting blades in the circumferential and axial direction of ASRT could remove hanging residue on the blade holders,wrapping on the rotor and formation of an isolation layer.Moreover,the cutting edge curve of anti-wrapping cutting blades was an exponential curve.Field tests demonstrated that the redesigned SRT with anti-vibrating and anti-wrapping rotary components(ASRT)had was a significant advancement over the CSRT.Moreover,the working depth of rotary tillage was more stable,while other observations confirmed that backfilling of the subsoiling slot was also improved. 展开更多
关键词 SUBSOILING rotary tiller anti-vibration anti-wrapping backfill tillage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部