The aim of this study was to evaluate the compressive strength of clay bricks and their stability to water absorption by inserting stabilizers such as lime and cement of 0%, 4%, 6%, 8%, 10%, 12% to 14%. Spectrometric ...The aim of this study was to evaluate the compressive strength of clay bricks and their stability to water absorption by inserting stabilizers such as lime and cement of 0%, 4%, 6%, 8%, 10%, 12% to 14%. Spectrometric analysis was used to characterize the various stabilizers and the clay used, and tests of resistance and water absorption were also carried out. The clay was found to be an aluminosilicate (15.55% to 17.17% Al2O3 and 42.12% to 44.15% SiO2). The lime contains 90.84% CaO and the cement has 17.80% SiO2, 3.46% Al2O3, 2.43% Fe2O3 and 58.47% CaO in the combined form of tricalcium silicate, dicalcium silicate, tricalcium aluminate and ferro-tetra calcium aluminate. The results showed that the insertion of locally available stabilizers (lime and cement) improved the strength of the material by almost 80% when the lime was increased from 0% to 14% for 14 days. For compressed cement, a 65% increase in strength was observed under the same conditions. Strength increases with drying time, with a 52% increase in strength at 28 days compared to 14 days. Furthermore, compressed cement bricks have a more compact structure, absorbing very little water (32%). In view of all these results, cement appears to be the best stabilizer, and compression improves compressive strength and reduces water absorption.展开更多
The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the ba...The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.展开更多
In general,acid aggregates are not used in combination with asphalt concrete because of their poor compatibility with the asphalt binder,which typically results in a scarce water stability of the concrete.In the prese...In general,acid aggregates are not used in combination with asphalt concrete because of their poor compatibility with the asphalt binder,which typically results in a scarce water stability of the concrete.In the present study,the feasibility of a new approach based on the combination of acid granite fine aggregate with alkaline limestone coarse aggregate and Portland cement filler has been assessed.The mineral and chemical compositions of these three materials have first been analyzed and compared.Then,the effect of different amounts of Portland cement(0%,25%,50%,75%and 100%of the total filler by weight)on the mechanical performance and water stability of the asphalt concrete has been considered.Asphalt concrete has been designed by using the Marshall method,and the mechanical performance indexes of this material,including the Marshall stability and indirect tensile strength(ITS),have been measured together with the related water stability indexes(namely the Marshall stability(RMS)and tensile strength ratio(TSR)).The results indicate that the alkaline limestone coarse aggregate and Portland cement filler can balance the drawback caused by the acid granite fine aggregate.The asphalt concrete has good mechanical performances and water stability when the amount of common limestone powder filler replaced by cement is not less than 75%.展开更多
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group...To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.展开更多
Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the ...Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the Kutubpalong & Balukhali Rohingya camp area. An attempt has been made to see the influence of seasonal variation of ground water level (G.W.L.) fluctuations on the stability of the eco hills and forests of Ukhiya Teknaf region. Ukhiya hills are in great danger because of cutting trees from the hill slopes and it is well established that due to recent change of climate, short term rainfall for few consecutive days during monsoon might show an influence on the factor of safety (Fs) values of the camp hill slopes. A clear G.W.L. variation between dry and wet seasons has an influence on the stability (Fs) values indicating that climate has a strong influence on the stability and threatening sustainable development. A stable or marginally stable slope might be unstable during raining and show a variation of ground water level (G.W.L.). The generation of pore water pressure (P.W.P.) is also influenced by seasonal variation of ground water level. During wet season negative P.W.P. called suction plays an important role to occur slope failures in the Ukhiya hills. Based on all calculated factor of safety values (Fs) at different locations, four (4) susceptible landslide risk zones are identified. They are very high risk (Fs = 0.18 to 0.46), high risk (Fs = 0.56 to 0.75), medium risk (Fs = 0.76 to 1.0) and marginally stable areas (Fs ≈ 1). Proper geo-engineering measures must be taken by the concerned authorizes to reduce P.W.P. during monsoon by installing rain water harvesting system, allowing sufficient drainage & other geotechnical measures to reduce the risk of slope failures in the Ukhiya hills. Based on the stability factor (Fs) at different slope locations of the camp hills, a risk map of the investigated area has been produced for the local community for their safety and to build up awareness & to motivate them to evacuate the site during monsoonal slope failures. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of landslide risks in the investigated area.展开更多
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re...Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.展开更多
The coagulation process is a widely applied technology in water and wastewater treatment.Novel composite polyferric mag-nesium-silicate-sulfate(PFMS)coagulants were synthesized using Na_(2)SiO_(3)·9H_(2)O,Fe_(2)(...The coagulation process is a widely applied technology in water and wastewater treatment.Novel composite polyferric mag-nesium-silicate-sulfate(PFMS)coagulants were synthesized using Na_(2)SiO_(3)·9H_(2)O,Fe_(2)(SO_(4))_(3),and MgSO_(4) as raw materials in this paper.The effects of aging time,Fe:Si:Mg,and OH:M molar ratios(M represents the metal ions)on the coagulation performance of the as-pre-pared PFMS were systematically investigated to obtain optimum coagulants.The results showed that PFMS coagulant exhibited good co-agulation properties in the treatment of simulated humic acid-kaolin surface water and reactive dye wastewater.When the molar ratio was controlled at Fe:Si:Mg=2:2:1 and OH:M=0.32,the obtained PFMS presented excellent stability and a high coagulation efficiency.The removal efficiency of ultraviolet UV254 was 99.81%,and the residual turbidity of the surface water reached 0.56 NTU at a dosage of 30 mg·L^(-1).After standing the coagulant for 120 d in the laboratory,the removal efficiency of UV254 and residual turbidity of the surface wa-ter were 88.12%and 0.68 NTU,respectively,which accord with the surface water treatment requirements.In addition,the coagulation performance in the treatment of reactive dye wastewater was greatly improved by combining the advantages of magnesium and iron salts.Compared with polyferric silicate-sulfate(PFS)and polymagnesium silicate-sulfate(PMS),the PFMS coagulant played a better decolor-ization role within the pH range of 7-13.展开更多
The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties...The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.展开更多
In order to apply nano-particles to the ammonia-water absorption refrigeration, the zinc ferrite nano-particles suspension of ammonia-water solution with the mixed surfactants of sodium dodecyl benzene sulfonate (SDB...In order to apply nano-particles to the ammonia-water absorption refrigeration, the zinc ferrite nano-particles suspension of ammonia-water solution with the mixed surfactants of sodium dodecyl benzene sulfonate (SDBS) and cetyl trimethyl ammonium bromide (CTAB) is prepared. A series of experiments is performed to investigate the stability of the prepared nanofluid with different contents and proportions of surfactants, different durations of ultrasonic wave vibration and different durations of illumination. The optimal dispersion conditions are 1.5% SDBS, 0. 015% CTAB(mass fraction), 30 min of ultrasonic vibration and over 72 h of illumination. Finally, based on double electrode layer theory, the influences of the content of the surfactants on the stability of nanofluid are analyzed. The existence of the optimal surfactant content is proved, which is in accordance with the experimental results.展开更多
The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studi...The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.smm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils.展开更多
Cotton plant observes significant reduction in seed cotton yield when subjected to water stress.To find out genotypes having better drought tolerance,seven genotypes of Gossypium hirsutum L.were tested under two moist...Cotton plant observes significant reduction in seed cotton yield when subjected to water stress.To find out genotypes having better drought tolerance,seven genotypes of Gossypium hirsutum L.were tested under two moisture levels,i.e.,normal and water deficit stress conditions at five locations of Punjab,Pakistan(Faisalabad,Sahiwal,Vehari,Rahim Yar Khan,and Bahawalpur)in 2013 and 2014.Genotype×environment interaction(GEI)was studied using the genotype main effects and genotype by environment interaction(GGE)biplot and additive main effect and multiplicative interaction analysis.The genotypes G3(7001/11)and G6(FH-942)were stable under normal condition,while under drought condition,the stable genotype was G5(FH-326)when analysed using additive main effects and multiplicative interaction(AMMI)biplot scheme.While GGE biplot analysis on the basis of best performance revealed that under normal condition the genotypes,G1(L-13/10)and G2(FH-2056/10),carrying the common position in biplot.Whereas,under water deficit stress condition,G5 was the best adaptive genotype at all five locations.In the same way,ranking of genotypes showed that the G5 was the ideal genotype under both conditions.So,it is concluded that the genotype G5(FH-326)was found best for water deficit stress condition and can be cultivated under water scarce areas of Punjab.展开更多
In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable...In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well.展开更多
A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ...A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ion was unstable, with a high Fe (OH)3 precipitation tendency and obvious increase in turbidity. The outer layer of the corrosion scale was compact, while the inner core was porous. The main composition of the scale was iron, and the possible compound constitutes of the outer scale were α-FeOH, γ-FeOOH, α-Fe2O3, γ-F2O3, FeCl3, while the inner were Fe3O4, FeCl2, FeCO3. According to the characteristics of the corrosion scale, it was thought that the main reason for iron instability was iron release from corrosion scale. Many factors such as pipe materials, dissolved oxygen and chlorine residual affect iron release. Generally, higher iron release occurred with lower dissolved oxygen or chlorine residual concentration, while lower iron release occurred with higher dissolved oxygen or chlorine residual concentration. The reason was considered that the passivated out layer of scale of ferric oxide was broken down by reductive reaction in a condition of low oxidants concentration, which would result more rapid corrosion of the nine and red water phenomenon.展开更多
Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measurin...Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other.展开更多
A northern living strict water network was employed to investigate interaction among biological stability and classical water quality indexes. Key water quality indexes on water quality were determined by the static t...A northern living strict water network was employed to investigate interaction among biological stability and classical water quality indexes. Key water quality indexes on water quality were determined by the static test,then the correlations between biological stability and traditional water quality parameters were analyzed. Traditional water quality parameters and limited factors on bacteria were measured in summer and winter respectively. The results show that BDOC concentration change differently in summer and winter.Among classical parameters turbidity has a positive relation with BDOC but pH has a negative relation with BDOC. Total bacteria number shows a positive correlation with BDOC in the water distribution system.Residual chlorine shows a negative relation with total bacteria number. Fe content increasing will induce turbidity rising in water. To guarantee water safety,BDOC and chlorine content control must be incorporated together to restrict bacteria regrowth.展开更多
In this study, the effects of pH on slurrying properties of petroleum coke water slurry(PCWS) were investigated. The slurrying concentration, rheological characteristics and stability of PCWS were studied with four ...In this study, the effects of pH on slurrying properties of petroleum coke water slurry(PCWS) were investigated. The slurrying concentration, rheological characteristics and stability of PCWS were studied with four different types of additives at pH varying from 5 to 11.The results showed that the slurrying concentration, rheological characteristics and stability of PCWS all increased at first and then decreased with increasing pH from 5 to 11,and a pH of around 9 was found to be the most favorable acid–alkali environment to all these three slurrying properties. It was also indicated that only in a moderate alkaline environment can the additives be active enough to react with particle surfaces sufficiently to obtain good slurrying concentration and form a stable three-dimensional network structure, which can support strong pseudoplastic characteristics and good stability. An acid environment was a very unfavorable factor to the slurrying properties of PCWS.展开更多
The stability of petroleum coke water slurry(PCWS) is currently a hot topic. The inherent relationship between yield stress and stability of bubble-PCWS was studied through orthogonal experiments and range analysis ...The stability of petroleum coke water slurry(PCWS) is currently a hot topic. The inherent relationship between yield stress and stability of bubble-PCWS was studied through orthogonal experiments and range analysis in this work. The results showed that the stability of bubble-PCWS was positively related to the yield stress and that the yield stress could be greatly impacted by the operation conditions during preparation of bubble-PCWS. The main factors affecting the yield stress of bubble-PCWS were solid concentration, aeration time and dosage of frother. However, the effects of aperture size of air distribution plates and type of frother on the yield stress were slight within the experimental range. The optimal conditions for the greatest yield stress were as follows: aeration time of 30 min, solid concentration of 65 wt%, frother dosage of0.030 wt% of the air-dried pulverized petroleum coke, aperture size of air distribution plate of 2-5 lm and AOS frother.The yield stress and the pour rate of bubble-PCWS under this optimum operation condition could reach maxima of more than 0.4 Pa and 96%, respectively.展开更多
A novel water cluster [Mn(phen)2·H2O·Cl]·p-FBA·3H2O (p-FBA = p-fluorobenzoic acid and phen = 1,10-phenanthroline) was synthesized by the hydrothermal reaction of MnCl2 with p-FBA and phen at 1...A novel water cluster [Mn(phen)2·H2O·Cl]·p-FBA·3H2O (p-FBA = p-fluorobenzoic acid and phen = 1,10-phenanthroline) was synthesized by the hydrothermal reaction of MnCl2 with p-FBA and phen at 150 ℃ and characterized by elemental analysis,IR spectra and TG. Its crystal structure was determined by X-ray single-crystal diffraction study. The crystal belongs to the triclinic system,space group P1,with a = 10.5768(1),b = 11.5960(1),c = 12.9916(2) ,α = 101.816(2),β = 95.397(2),γ = 103.052(2)o,V = 1502.8(3) 3,Z = 2,Dc = 1.463 g/cm3,R = 0.0399 and wR = 0.0997. The crystal structure shows that the manganese(Ⅱ ) ion is six-coordinated by four nitrogen atoms,one chloride ion and one oxygen atom forming a distorted octahedral coordination geometry. The structure includes three acyclically connected water molecules and one coordinated water molecule thus forming a (H2O)4 water cluster. This water pattern forms a cross-linked discrete ring. The steady (H2O)4 is further extended into a cage-like structure by the hydrogen-bonding interaction formed by dissociative aqua molecule and Cl-ligand. The dimer structure is further extended into a one-dimensional (1D) structure through C-H···O interaction. π···π Stacking interaction among adjacent phen aromatic rings further stabilizes the crystal structure.展开更多
Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The ...Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.展开更多
Breakwaters have been built throughout the centuries for the coastal protection and the port development,but changes occurred in their layout and criteria used for the design.Quarter circle breakwater(QBW)is a new typ...Breakwaters have been built throughout the centuries for the coastal protection and the port development,but changes occurred in their layout and criteria used for the design.Quarter circle breakwater(QBW)is a new type evolved having advantages of both caisson type and perforated type breakwaters.The present study extracts the effect of change in the percentage of perforations on the stable conditions of seaside perforated QBW by using various physical models.The results were graphically analyzed using dimensionless parameters and it was concluded that there is a reduction in dimensionless stability parameter with an increase in steepness of the wave and change in water depth to the height of breakwater structure.Multiple non–linear regression analysis was done and the equation for the best fit curve with a higher regression coefficient was obtained by using Excel statistical software—XLSTAT.展开更多
文摘The aim of this study was to evaluate the compressive strength of clay bricks and their stability to water absorption by inserting stabilizers such as lime and cement of 0%, 4%, 6%, 8%, 10%, 12% to 14%. Spectrometric analysis was used to characterize the various stabilizers and the clay used, and tests of resistance and water absorption were also carried out. The clay was found to be an aluminosilicate (15.55% to 17.17% Al2O3 and 42.12% to 44.15% SiO2). The lime contains 90.84% CaO and the cement has 17.80% SiO2, 3.46% Al2O3, 2.43% Fe2O3 and 58.47% CaO in the combined form of tricalcium silicate, dicalcium silicate, tricalcium aluminate and ferro-tetra calcium aluminate. The results showed that the insertion of locally available stabilizers (lime and cement) improved the strength of the material by almost 80% when the lime was increased from 0% to 14% for 14 days. For compressed cement, a 65% increase in strength was observed under the same conditions. Strength increases with drying time, with a 52% increase in strength at 28 days compared to 14 days. Furthermore, compressed cement bricks have a more compact structure, absorbing very little water (32%). In view of all these results, cement appears to be the best stabilizer, and compression improves compressive strength and reduces water absorption.
基金National Natural Science Foundation of China,Grant/Award Numbers:11974303,12074332Qinglan Project of Jiangsu Province,Grant/Award Number:137050317the Interdisciplinary Research Project of Chemistry Discipline,Grant/Award Number:yzuxk202014 and High‐End Talent Program of Yangzhou University,Grant/Award Number:137080051。
文摘The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.
基金supported by the Science and Technology Planning Project of Zhejiang Provincial Department of Transportation(2021012)Zhejiang Provincial Natural Science Foundation of China under Grant(No.LGG21E080002).
文摘In general,acid aggregates are not used in combination with asphalt concrete because of their poor compatibility with the asphalt binder,which typically results in a scarce water stability of the concrete.In the present study,the feasibility of a new approach based on the combination of acid granite fine aggregate with alkaline limestone coarse aggregate and Portland cement filler has been assessed.The mineral and chemical compositions of these three materials have first been analyzed and compared.Then,the effect of different amounts of Portland cement(0%,25%,50%,75%and 100%of the total filler by weight)on the mechanical performance and water stability of the asphalt concrete has been considered.Asphalt concrete has been designed by using the Marshall method,and the mechanical performance indexes of this material,including the Marshall stability and indirect tensile strength(ITS),have been measured together with the related water stability indexes(namely the Marshall stability(RMS)and tensile strength ratio(TSR)).The results indicate that the alkaline limestone coarse aggregate and Portland cement filler can balance the drawback caused by the acid granite fine aggregate.The asphalt concrete has good mechanical performances and water stability when the amount of common limestone powder filler replaced by cement is not less than 75%.
基金the financial supports from the Key Research and Development Program of Guangxi(No.GUIKE AB22080061)the Guangxi Transportation Industry Key Science and Technology Projects(No.GXJT-2020-02-08)+2 种基金the National Natural Science Foundation of China(No.52268062)the Guangxi Key Project of Nature Science Foundation(No.2020GXNSFDA238024)。
文摘To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.
文摘Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the Kutubpalong & Balukhali Rohingya camp area. An attempt has been made to see the influence of seasonal variation of ground water level (G.W.L.) fluctuations on the stability of the eco hills and forests of Ukhiya Teknaf region. Ukhiya hills are in great danger because of cutting trees from the hill slopes and it is well established that due to recent change of climate, short term rainfall for few consecutive days during monsoon might show an influence on the factor of safety (Fs) values of the camp hill slopes. A clear G.W.L. variation between dry and wet seasons has an influence on the stability (Fs) values indicating that climate has a strong influence on the stability and threatening sustainable development. A stable or marginally stable slope might be unstable during raining and show a variation of ground water level (G.W.L.). The generation of pore water pressure (P.W.P.) is also influenced by seasonal variation of ground water level. During wet season negative P.W.P. called suction plays an important role to occur slope failures in the Ukhiya hills. Based on all calculated factor of safety values (Fs) at different locations, four (4) susceptible landslide risk zones are identified. They are very high risk (Fs = 0.18 to 0.46), high risk (Fs = 0.56 to 0.75), medium risk (Fs = 0.76 to 1.0) and marginally stable areas (Fs ≈ 1). Proper geo-engineering measures must be taken by the concerned authorizes to reduce P.W.P. during monsoon by installing rain water harvesting system, allowing sufficient drainage & other geotechnical measures to reduce the risk of slope failures in the Ukhiya hills. Based on the stability factor (Fs) at different slope locations of the camp hills, a risk map of the investigated area has been produced for the local community for their safety and to build up awareness & to motivate them to evacuate the site during monsoonal slope failures. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of landslide risks in the investigated area.
文摘Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.
基金supported by the National Natural Science Foundation of China (No.U1810205).
文摘The coagulation process is a widely applied technology in water and wastewater treatment.Novel composite polyferric mag-nesium-silicate-sulfate(PFMS)coagulants were synthesized using Na_(2)SiO_(3)·9H_(2)O,Fe_(2)(SO_(4))_(3),and MgSO_(4) as raw materials in this paper.The effects of aging time,Fe:Si:Mg,and OH:M molar ratios(M represents the metal ions)on the coagulation performance of the as-pre-pared PFMS were systematically investigated to obtain optimum coagulants.The results showed that PFMS coagulant exhibited good co-agulation properties in the treatment of simulated humic acid-kaolin surface water and reactive dye wastewater.When the molar ratio was controlled at Fe:Si:Mg=2:2:1 and OH:M=0.32,the obtained PFMS presented excellent stability and a high coagulation efficiency.The removal efficiency of ultraviolet UV254 was 99.81%,and the residual turbidity of the surface water reached 0.56 NTU at a dosage of 30 mg·L^(-1).After standing the coagulant for 120 d in the laboratory,the removal efficiency of UV254 and residual turbidity of the surface wa-ter were 88.12%and 0.68 NTU,respectively,which accord with the surface water treatment requirements.In addition,the coagulation performance in the treatment of reactive dye wastewater was greatly improved by combining the advantages of magnesium and iron salts.Compared with polyferric silicate-sulfate(PFS)and polymagnesium silicate-sulfate(PMS),the PFMS coagulant played a better decolor-ization role within the pH range of 7-13.
基金This research was funded by the National Natural Science Foundation of China(51709194),Qinglan Project of Jiangsu University,the Priority Academic Program Development of Jiangsu Higher Education Institutions,and Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering.
文摘The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.
基金The National Natural Science Foundation of China(No.50876020)
文摘In order to apply nano-particles to the ammonia-water absorption refrigeration, the zinc ferrite nano-particles suspension of ammonia-water solution with the mixed surfactants of sodium dodecyl benzene sulfonate (SDBS) and cetyl trimethyl ammonium bromide (CTAB) is prepared. A series of experiments is performed to investigate the stability of the prepared nanofluid with different contents and proportions of surfactants, different durations of ultrasonic wave vibration and different durations of illumination. The optimal dispersion conditions are 1.5% SDBS, 0. 015% CTAB(mass fraction), 30 min of ultrasonic vibration and over 72 h of illumination. Finally, based on double electrode layer theory, the influences of the content of the surfactants on the stability of nanofluid are analyzed. The existence of the optimal surfactant content is proved, which is in accordance with the experimental results.
文摘The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.smm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils.
文摘Cotton plant observes significant reduction in seed cotton yield when subjected to water stress.To find out genotypes having better drought tolerance,seven genotypes of Gossypium hirsutum L.were tested under two moisture levels,i.e.,normal and water deficit stress conditions at five locations of Punjab,Pakistan(Faisalabad,Sahiwal,Vehari,Rahim Yar Khan,and Bahawalpur)in 2013 and 2014.Genotype×environment interaction(GEI)was studied using the genotype main effects and genotype by environment interaction(GGE)biplot and additive main effect and multiplicative interaction analysis.The genotypes G3(7001/11)and G6(FH-942)were stable under normal condition,while under drought condition,the stable genotype was G5(FH-326)when analysed using additive main effects and multiplicative interaction(AMMI)biplot scheme.While GGE biplot analysis on the basis of best performance revealed that under normal condition the genotypes,G1(L-13/10)and G2(FH-2056/10),carrying the common position in biplot.Whereas,under water deficit stress condition,G5 was the best adaptive genotype at all five locations.In the same way,ranking of genotypes showed that the G5 was the ideal genotype under both conditions.So,it is concluded that the genotype G5(FH-326)was found best for water deficit stress condition and can be cultivated under water scarce areas of Punjab.
文摘In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well.
文摘A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ion was unstable, with a high Fe (OH)3 precipitation tendency and obvious increase in turbidity. The outer layer of the corrosion scale was compact, while the inner core was porous. The main composition of the scale was iron, and the possible compound constitutes of the outer scale were α-FeOH, γ-FeOOH, α-Fe2O3, γ-F2O3, FeCl3, while the inner were Fe3O4, FeCl2, FeCO3. According to the characteristics of the corrosion scale, it was thought that the main reason for iron instability was iron release from corrosion scale. Many factors such as pipe materials, dissolved oxygen and chlorine residual affect iron release. Generally, higher iron release occurred with lower dissolved oxygen or chlorine residual concentration, while lower iron release occurred with higher dissolved oxygen or chlorine residual concentration. The reason was considered that the passivated out layer of scale of ferric oxide was broken down by reductive reaction in a condition of low oxidants concentration, which would result more rapid corrosion of the nine and red water phenomenon.
基金the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-YW-409) the National Key Technologies Research and Development Program in the Eleventh Five-year Plan of China (2006BAC01A11).
文摘Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other.
基金Sponsored by Natural Science Foundation of Shandong Province(Grant No.ZR2014EL033)
文摘A northern living strict water network was employed to investigate interaction among biological stability and classical water quality indexes. Key water quality indexes on water quality were determined by the static test,then the correlations between biological stability and traditional water quality parameters were analyzed. Traditional water quality parameters and limited factors on bacteria were measured in summer and winter respectively. The results show that BDOC concentration change differently in summer and winter.Among classical parameters turbidity has a positive relation with BDOC but pH has a negative relation with BDOC. Total bacteria number shows a positive correlation with BDOC in the water distribution system.Residual chlorine shows a negative relation with total bacteria number. Fe content increasing will induce turbidity rising in water. To guarantee water safety,BDOC and chlorine content control must be incorporated together to restrict bacteria regrowth.
基金support from the National Natural Science Foundation of China (No. 51506185)Zhejiang Provincial Natural Science Foundation of China (No. LQ15E060002)
文摘In this study, the effects of pH on slurrying properties of petroleum coke water slurry(PCWS) were investigated. The slurrying concentration, rheological characteristics and stability of PCWS were studied with four different types of additives at pH varying from 5 to 11.The results showed that the slurrying concentration, rheological characteristics and stability of PCWS all increased at first and then decreased with increasing pH from 5 to 11,and a pH of around 9 was found to be the most favorable acid–alkali environment to all these three slurrying properties. It was also indicated that only in a moderate alkaline environment can the additives be active enough to react with particle surfaces sufficiently to obtain good slurrying concentration and form a stable three-dimensional network structure, which can support strong pseudoplastic characteristics and good stability. An acid environment was a very unfavorable factor to the slurrying properties of PCWS.
基金he financial supports from National Natural Science Foundation of China (Grant No. 51506185)Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ15E060002)
文摘The stability of petroleum coke water slurry(PCWS) is currently a hot topic. The inherent relationship between yield stress and stability of bubble-PCWS was studied through orthogonal experiments and range analysis in this work. The results showed that the stability of bubble-PCWS was positively related to the yield stress and that the yield stress could be greatly impacted by the operation conditions during preparation of bubble-PCWS. The main factors affecting the yield stress of bubble-PCWS were solid concentration, aeration time and dosage of frother. However, the effects of aperture size of air distribution plates and type of frother on the yield stress were slight within the experimental range. The optimal conditions for the greatest yield stress were as follows: aeration time of 30 min, solid concentration of 65 wt%, frother dosage of0.030 wt% of the air-dried pulverized petroleum coke, aperture size of air distribution plate of 2-5 lm and AOS frother.The yield stress and the pour rate of bubble-PCWS under this optimum operation condition could reach maxima of more than 0.4 Pa and 96%, respectively.
基金supported by the Postgraduate Foundation of Taishan University (No. Y07-2-16)
文摘A novel water cluster [Mn(phen)2·H2O·Cl]·p-FBA·3H2O (p-FBA = p-fluorobenzoic acid and phen = 1,10-phenanthroline) was synthesized by the hydrothermal reaction of MnCl2 with p-FBA and phen at 150 ℃ and characterized by elemental analysis,IR spectra and TG. Its crystal structure was determined by X-ray single-crystal diffraction study. The crystal belongs to the triclinic system,space group P1,with a = 10.5768(1),b = 11.5960(1),c = 12.9916(2) ,α = 101.816(2),β = 95.397(2),γ = 103.052(2)o,V = 1502.8(3) 3,Z = 2,Dc = 1.463 g/cm3,R = 0.0399 and wR = 0.0997. The crystal structure shows that the manganese(Ⅱ ) ion is six-coordinated by four nitrogen atoms,one chloride ion and one oxygen atom forming a distorted octahedral coordination geometry. The structure includes three acyclically connected water molecules and one coordinated water molecule thus forming a (H2O)4 water cluster. This water pattern forms a cross-linked discrete ring. The steady (H2O)4 is further extended into a cage-like structure by the hydrogen-bonding interaction formed by dissociative aqua molecule and Cl-ligand. The dimer structure is further extended into a one-dimensional (1D) structure through C-H···O interaction. π···π Stacking interaction among adjacent phen aromatic rings further stabilizes the crystal structure.
文摘Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.
基金The authors are thankful to Director,NITK Surathkal and the Head of Applied Mechanics Department,NITK Surathkal for all the support and encouragement in the preparation of this paper.
文摘Breakwaters have been built throughout the centuries for the coastal protection and the port development,but changes occurred in their layout and criteria used for the design.Quarter circle breakwater(QBW)is a new type evolved having advantages of both caisson type and perforated type breakwaters.The present study extracts the effect of change in the percentage of perforations on the stable conditions of seaside perforated QBW by using various physical models.The results were graphically analyzed using dimensionless parameters and it was concluded that there is a reduction in dimensionless stability parameter with an increase in steepness of the wave and change in water depth to the height of breakwater structure.Multiple non–linear regression analysis was done and the equation for the best fit curve with a higher regression coefficient was obtained by using Excel statistical software—XLSTAT.