The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered...The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered specimens of rock-like material with varying thickness to investigate the failure behaviors of tunnel floors.The results indicate that thin-layered rock mass exhibits weak interlayer bonding,causing rock layers near the surface to buckle and break upwards when subjected to horizontal squeezing.With an increase in the layer thickness,a transition in failure mode occurs from upward buckling to shear failure along the plane,leading to a noticeable reduction in floor heave deformation.The primary cause of significant deformation in floor heave is upward buckling failure.To address this issue,the study proposes the installation of a partition wall in the middle of the floor to mitigate heave deformation of the rock layers.The results demonstrate that the partition wall has a considerable stabilizing effect on the floor,reducing the zone of buckling failure and minimizing floor heave deformation.It is crucial for the partition wall to be sufficiently high to prevent buckling failure and ensure stability.Through simulation calculations on an engineering example,it is confirmed that implementing a partition wall can effectively reduce floor heave and enhance the stability of tunnel floor.展开更多
Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to...Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to be resolved during coal mining. An analysis of floor heave in the soft rock surrounding the roadway, and the factors influencing it, allowed the deformation mechanism in the west wing double track haulage roadway of the Tingnan Coal Mine to be deduced. Three types of floor heave are observed there: intumescent floor heave, extrusion and mobility floor heave, and compound floor heave. Control measures are proposed that have been adopted during a recent repair engineering project. Control of the floor heave in the west wing track haulage roadway was demonstrated. The reliability and rationality of a combined support technology including floor anchors, an inverted arch, and anchoring of both sides was verified by mine pressure data and the field observations. Waterproofing measures were also under-taken to assist in the control of floor heave.展开更多
The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh m...The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined fimctions of FLUENT. The added mass coefficient Cm and the damping coefficient Cd of heave plate with tapering condition and the chamfer condition are calculated. The results show that, in a certain range, the hydrodynamic performance of heave plate after being tapered is better.展开更多
In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the ...In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.展开更多
This paper presents an overview of the floor heave management at the Glencore Bulga Underground Operations and investigates the contributing factors to the behaviour of the floor. The mine experienced a number of majo...This paper presents an overview of the floor heave management at the Glencore Bulga Underground Operations and investigates the contributing factors to the behaviour of the floor. The mine experienced a number of major floor heave events in gateroads on development. As the longwall face approached the roadways, the magnitude of floor heave frequently increased, while new floor heave also developed.Furthermore, severe floor heave events took place along the longwall face. The most observed failure mode was buckling. While regular floor measurements were conducted to better understand the nature of the phenomenon, and various measures were considered to control the deformation of floor, the mining height was increased for the predicted floor heave domains, which facilitated effective management of the floor issues. The experience in the mine indicates that mainly high horizontal stresses with greater depths of cover and certain types of floor lithology configuration are likely to contribute to the failures of floor strata.展开更多
Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in ...Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in cold regions to prevent frost heaving the smaller the quantities of frost heaving and thawing, optimum fines content and limited frost heaving and thawing. The fine round gravel soil filling (FRGSF) used in the Harbin-Qiqihaer Passenger Dedicated Line is taken as the study object. Influence of fines content on optimum water content, maximum dry density and frost heaving properties of FRGSF were studied by means of compaction and frost heaving tests. Results show that the maximum dry density of the FRGSF increases first and then decreases with an increase of fines content, namely there is an optimum fines content for easy compaction. The method of surface-vibratory instrument is fit for coarse-grained soils, and wet state of coarse-grained soil is in favor of compaction. Considering the relationship of fines content with maximum dry density and the frost heaving ratio of FRGSF, the fines content should be limited to within the range of 9%-10%, so that the frost heaving ratio is less than 1%, and the FRGSF is easily compacted. Water supply is proved to be an important factor influencing the amount of frost heaving of FRGSF. We also conclude that in the field, it is imperative to control waterproofing and drainage measures.展开更多
The Haerbin-Dalian Passenger Dedicated Line is the first high-speed railway constructed in the seasonally frozen ground regions of northeastern China. Frost heave diseases occurred in the first winter of its operation...The Haerbin-Dalian Passenger Dedicated Line is the first high-speed railway constructed in the seasonally frozen ground regions of northeastern China. Frost heave diseases occurred in the first winter of its operation (between October 2012 and January 2013), and frost heave was observed mainly in the roadbed fills that were considered not susceptible to frost heave. This paper proposes applying two special pavements -- black pavement and insulation-black pavement -- to improve the thermal regime of the roadbed. Three numerical models of the roadbed temperature field were built based on the field con- ditions of the Changchun section (D3K692+840 to D3K692+860). The results show that: (1) Compared with cement pave- ment, black pavement and insulation-black pavement could reduce the freezing index at the roadbed surface by 37% and 64%, respectively, which could influence the maximum frozen depth; (2) the maximum frozen depths under the black pavement and insulation-black pavement were respectively 1.3-1.4 m and 1 m. Compared with cement pavement, they could reduce the maximum frozen depth by 0.4 m and 0.7-0.8 m, respectively, which would reduce the permitted amount of frost heave by 4 mm and 7-8 ram, which would meet the deformation limit established by the Code for Design on Special Subgrade of Railway; (3) the freezing periods of the black pavement and the insulation-black pavement were, respectively, approximately four months and two months. Compared with cement pavement, they could reduce the freezing period by approximately 19 days and 40 days, respectively, and delay the initial freezing time by 9 days and 18 days; and (4) compared with cement pavement, black pavement and black-insulation pavement could reduce the frozen areas of roadbeds in the cold season, which suggests that these two special pavements could provide better thermal stability for roadbeds.展开更多
Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numeric...Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining.展开更多
Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point a...Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point absorbers, as a renewable energy device, have achieved a rapid development. Heave plate is used to constrain the truss’ s motion in the two-body point absorber, and the floater moves along the truss up and down. This two-body point absorber can be considered to be an essentially mass-spring-damper system. And it is well known that the heave plates have been widely used in the Spar platform to suppress the heave motions. So if the two-body point absorber can be modified to combine with offshore floating structures, this system can not only offer electric power to support operations or daily lives for the platform, but also control the large motions in the vertical plane. Following this concept, a novel tuned heave plate(THP) system is proposed for the conventional semi-submersible platform. In order to investigate the dynamic performances of the single THP, two experiments are conducted in this paper. First, the hydrodynamic coefficients of the heave plates are studied, and then the THP experiments are carried out to analyze its dynamic performance. It can be concluded that this THP is feasible and achieves the design objective.展开更多
The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil ...The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil areas is often faced with frost heave,leading to uneven subgrades which seriously threaten traffic safety.This article summarizes extant research results on frost heave mechanism,frost heave factors,and anti-frost measures of railway subgrades in seasonally frozen soil areas.展开更多
In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade...In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade in northeast China. GAMIT software is used to process the data, providing daily solution, daytime solution and nighttime solution. Vertical trends of these five stations were analyzed to investigate frost heave effect on railway subgrade deformation. The results show that the temperature difference between daytime and night induces stations, significant vertical displacement, and the temperature difference between seasons causes settlement of station which appears linear trend.展开更多
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre...Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.展开更多
Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comp...Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comparison,a configuration in which both boxes were fixed was also considered.The effects of the heave motion of the upstream box on the wave loads,including the horizontal wave forces,vertical wave forces,and moments on the boxes,were the focus of this study.Numerical analyses showed that all frequencies at which the maximum horizontal wave forces,maximum vertical wave forces,and maximum moment appeared are dependent on the heave motion of the upstream box and that the effects of the heave motion on these frequencies are different.Furthermore,these frequencies were observed to deviate from the corresponding fluid resonant frequency.Moreover,the heave motion of the upstream box reduced the wave forces acting on both boxes and altered the variation trends of the wave forces with the incident wave frequency.展开更多
Marine resource exploitation and marine cargo transportation were increasingly frequent. Due to the impact of the marine environment, ships or platforms were affected. In this paper, a servo electric cylinder was used...Marine resource exploitation and marine cargo transportation were increasingly frequent. Due to the impact of the marine environment, ships or platforms were affected. In this paper, a servo electric cylinder was used as a wave compensation actuator to design a wave compensation system. The laser sensor was used to measure the displacement in the direction of the heave platform, and the obtained displacement was applied to the wave compensation in the heave direction to verify the feasibility of the compensation system.展开更多
The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate a...The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate at panel 11505 of the Yushujing Coal Mine as background. First, based on the limit equilibrium method and slip line field theory,a model of floor heave was established, the mechanism of floor heave control was analyzed, and an optimized support method was proposed. Then, the displacement, stress and failure zones around the surrounding rock with the original and optimized support were studied by FLAC. Finally, the serviceability of the support method was verified by field application. The results showed that the main deformation form of soft rock roadway is floor heave, and 0.5 m is relatively reasonable thicknesses of the inverted arch. The extrusion failure zone and shear failure zone were mainly affected by tensile and shear failure, respectively. The modification of floor and the effective support are key points. The failure zone was consistent between numerical simulation and theoretical calculation. The maximum convergences of floor heave determined by numerical simulation and field measurement were 220 mm and 240 mm, respectively, which were reduced by 55% and 60% compared with the original support, and the convergence between sidewalls decreased considerably. The optimized support method controls the floor heave well.展开更多
Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a...Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a U-shaped steel closed support with an inverted U-shaped steel arch in the floor is proposed as a method for improving the support effect of the surrounding rock during the process of floor heaving.This research established a mechanical model for the U-shaped steel closed support,and determined the reaction forces at the connection of a camber angle.Using the limit load method calculated the critical buckling load of the inverted U-shaped steel arch,and use of a strength check method tested the strength of the U-shaped steel material.A numerical simulation was conducted using the finite difference software FLAC3 D.The simulation results show that the U-shaped steel closed support is able to control the floor heave of roadways,which is successfully used in the West 11-2 development roadway of the Zhuji Mine in the Huainan mining area in China.The cumulative floor heave over two years was less than50 mm.展开更多
The mechanism of floor heave was analyzed by establishing mechanics models and solving differential equations. The amount of floor heave is proportional to the abutment pressure of surrounding rock, roadway width, and...The mechanism of floor heave was analyzed by establishing mechanics models and solving differential equations. The amount of floor heave is proportional to the abutment pressure of surrounding rock, roadway width, and the distance of support pressure peak to the roadway and is inversely proportional to the elastic modulus of floor rock. Using FLAC2D to simulate floor rock grouting in soft rock roadway verifies the active role of floor rock grouting in the floor controlling of soft rock roadway; floor rock grouting and grouting range directly impact on the stability scope of surrounding rock, namely, with the increase of grouting range, the subsidence of roof, the approach of both sides, and the amount of floor heave decreased gradually, the stability of surrounding rock is enhanced展开更多
Maximum frost heave of unsaturated frost-susceptible soils,in conjunction with a high water table,is an important consideration for the design of foundations in seasonally frozen regions.Therefore,it is necessary to e...Maximum frost heave of unsaturated frost-susceptible soils,in conjunction with a high water table,is an important consideration for the design of foundations in seasonally frozen regions.Therefore,it is necessary to evaluate accurately and efficiently the maximum frost heave for a given soil.For this purpose,a series of one-sided freezing experiments was conducted on unsaturated silty clay in an open system.Multistage cooling of sufficient duration was applied to the soil sample's top,while constant above-zero temperatures were maintained at the bottom.Then,a simple methodology for calculating maximum frost heave at a given cooling temperature was derived utilizing information obtained within the limited time allotted for each stage.On this basis,an empirical equation for defining maximum frost heave as a function of cooling temperature and overburden pressure was determined.Overall,this study provides a simple and practical procedure that is applicable to the evaluation of maximum frost heave of unsaturated frost-susceptible soils.展开更多
基金supported by the Key Program of National Natural Science Foundation of China(No.U23A202579)the National Natural Science Foundation of China(No.42277187,42007276,41972297)the Natural Science Foundation of Hebei Province(No.D2021202002)。
文摘The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered specimens of rock-like material with varying thickness to investigate the failure behaviors of tunnel floors.The results indicate that thin-layered rock mass exhibits weak interlayer bonding,causing rock layers near the surface to buckle and break upwards when subjected to horizontal squeezing.With an increase in the layer thickness,a transition in failure mode occurs from upward buckling to shear failure along the plane,leading to a noticeable reduction in floor heave deformation.The primary cause of significant deformation in floor heave is upward buckling failure.To address this issue,the study proposes the installation of a partition wall in the middle of the floor to mitigate heave deformation of the rock layers.The results demonstrate that the partition wall has a considerable stabilizing effect on the floor,reducing the zone of buckling failure and minimizing floor heave deformation.It is crucial for the partition wall to be sufficiently high to prevent buckling failure and ensure stability.Through simulation calculations on an engineering example,it is confirmed that implementing a partition wall can effectively reduce floor heave and enhance the stability of tunnel floor.
基金grateful to the Key Program of the National Natural Science Foundation of China (Nos. 51134005, 40972196, and 41172263) for financing this research
文摘Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to be resolved during coal mining. An analysis of floor heave in the soft rock surrounding the roadway, and the factors influencing it, allowed the deformation mechanism in the west wing double track haulage roadway of the Tingnan Coal Mine to be deduced. Three types of floor heave are observed there: intumescent floor heave, extrusion and mobility floor heave, and compound floor heave. Control measures are proposed that have been adopted during a recent repair engineering project. Control of the floor heave in the west wing track haulage roadway was demonstrated. The reliability and rationality of a combined support technology including floor anchors, an inverted arch, and anchoring of both sides was verified by mine pressure data and the field observations. Waterproofing measures were also under-taken to assist in the control of floor heave.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079097 and 50879057)Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51021004)
文摘The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined fimctions of FLUENT. The added mass coefficient Cm and the damping coefficient Cd of heave plate with tapering condition and the chamfer condition are calculated. The results show that, in a certain range, the hydrodynamic performance of heave plate after being tapered is better.
基金financially supported by the National Natural Science Foundation of China(Grant No.51639004)
文摘In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.
基金financial support from the Australian Coal Association Research Program (ACARP) project C26064
文摘This paper presents an overview of the floor heave management at the Glencore Bulga Underground Operations and investigates the contributing factors to the behaviour of the floor. The mine experienced a number of major floor heave events in gateroads on development. As the longwall face approached the roadways, the magnitude of floor heave frequently increased, while new floor heave also developed.Furthermore, severe floor heave events took place along the longwall face. The most observed failure mode was buckling. While regular floor measurements were conducted to better understand the nature of the phenomenon, and various measures were considered to control the deformation of floor, the mining height was increased for the predicted floor heave domains, which facilitated effective management of the floor issues. The experience in the mine indicates that mainly high horizontal stresses with greater depths of cover and certain types of floor lithology configuration are likely to contribute to the failures of floor strata.
基金funded by the National Key Technology Support Program of China under Grant No. 2012BAG05B00the National Natural Science Foundation (NSFC) of China under Grant No. 51208320 and No. 51171281
文摘Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in cold regions to prevent frost heaving the smaller the quantities of frost heaving and thawing, optimum fines content and limited frost heaving and thawing. The fine round gravel soil filling (FRGSF) used in the Harbin-Qiqihaer Passenger Dedicated Line is taken as the study object. Influence of fines content on optimum water content, maximum dry density and frost heaving properties of FRGSF were studied by means of compaction and frost heaving tests. Results show that the maximum dry density of the FRGSF increases first and then decreases with an increase of fines content, namely there is an optimum fines content for easy compaction. The method of surface-vibratory instrument is fit for coarse-grained soils, and wet state of coarse-grained soil is in favor of compaction. Considering the relationship of fines content with maximum dry density and the frost heaving ratio of FRGSF, the fines content should be limited to within the range of 9%-10%, so that the frost heaving ratio is less than 1%, and the FRGSF is easily compacted. Water supply is proved to be an important factor influencing the amount of frost heaving of FRGSF. We also conclude that in the field, it is imperative to control waterproofing and drainage measures.
基金supported by the National Science and Technology Support Program (No. 2014BAG05B03)the National Key Basic Research Program of China (973 Program) (No. 2012CB026106)the Program for Innovative Research Group of the Natural Science Foundation of China (No. 41121061)
文摘The Haerbin-Dalian Passenger Dedicated Line is the first high-speed railway constructed in the seasonally frozen ground regions of northeastern China. Frost heave diseases occurred in the first winter of its operation (between October 2012 and January 2013), and frost heave was observed mainly in the roadbed fills that were considered not susceptible to frost heave. This paper proposes applying two special pavements -- black pavement and insulation-black pavement -- to improve the thermal regime of the roadbed. Three numerical models of the roadbed temperature field were built based on the field con- ditions of the Changchun section (D3K692+840 to D3K692+860). The results show that: (1) Compared with cement pave- ment, black pavement and insulation-black pavement could reduce the freezing index at the roadbed surface by 37% and 64%, respectively, which could influence the maximum frozen depth; (2) the maximum frozen depths under the black pavement and insulation-black pavement were respectively 1.3-1.4 m and 1 m. Compared with cement pavement, they could reduce the maximum frozen depth by 0.4 m and 0.7-0.8 m, respectively, which would reduce the permitted amount of frost heave by 4 mm and 7-8 ram, which would meet the deformation limit established by the Code for Design on Special Subgrade of Railway; (3) the freezing periods of the black pavement and the insulation-black pavement were, respectively, approximately four months and two months. Compared with cement pavement, they could reduce the freezing period by approximately 19 days and 40 days, respectively, and delay the initial freezing time by 9 days and 18 days; and (4) compared with cement pavement, black pavement and black-insulation pavement could reduce the frozen areas of roadbeds in the cold season, which suggests that these two special pavements could provide better thermal stability for roadbeds.
基金provided by the National Natural Science Foundation of China(No.51174195)the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology(No.SKLCRSM08X04)+1 种基金a foundation for the author of the National Excellent Doctoral Dissertation of China(No.200760)the Science Research Fund of China University of Mining and Technology(No.2008A002)
文摘Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining.
基金financially supported by the Fundamental Research Program of Shandong Province(Grant No.ZR2016EEQ23)the Youth Exploration Project of Shandong Province Mount Tai Scholar Advanced Disciplinary Talent Group
文摘Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point absorbers, as a renewable energy device, have achieved a rapid development. Heave plate is used to constrain the truss’ s motion in the two-body point absorber, and the floater moves along the truss up and down. This two-body point absorber can be considered to be an essentially mass-spring-damper system. And it is well known that the heave plates have been widely used in the Spar platform to suppress the heave motions. So if the two-body point absorber can be modified to combine with offshore floating structures, this system can not only offer electric power to support operations or daily lives for the platform, but also control the large motions in the vertical plane. Following this concept, a novel tuned heave plate(THP) system is proposed for the conventional semi-submersible platform. In order to investigate the dynamic performances of the single THP, two experiments are conducted in this paper. First, the hydrodynamic coefficients of the heave plates are studied, and then the THP experiments are carried out to analyze its dynamic performance. It can be concluded that this THP is feasible and achieves the design objective.
基金the Foundation for Excellent Youth Scholars of"Northwest Institute of Eco-Environment and Resources",CAS(grant number:FEYS2019002)the Research Project of State Key Laboratory of Frozen Soil Engineering(grant number:SKLFSE-ZQ-52)the Open Project of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(grant number:KF2020-02)。
文摘The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil areas is often faced with frost heave,leading to uneven subgrades which seriously threaten traffic safety.This article summarizes extant research results on frost heave mechanism,frost heave factors,and anti-frost measures of railway subgrades in seasonally frozen soil areas.
基金supported by the National Natural Science Foundation of China (41374033)
文摘In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade in northeast China. GAMIT software is used to process the data, providing daily solution, daytime solution and nighttime solution. Vertical trends of these five stations were analyzed to investigate frost heave effect on railway subgrade deformation. The results show that the temperature difference between daytime and night induces stations, significant vertical displacement, and the temperature difference between seasons causes settlement of station which appears linear trend.
基金support by the National Natural Science Foundation of China (No.51174195)the Fundamental Research Funds for the Central Universities of China (No.2010QNA31)
文摘Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.
基金the National Key Research and Development Program(Grant No.2017YFC1404200)the National Natural Science Foundation of China(Grant Nos.51911530205 and 51809039)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20201455)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.20KJD170005)the Qing Lan Project of Jiangsu Universities.This work is also partially supported by UK EPSRC(Grant No.EP/T026782/1)the Royal Academy of Engineering(Grant No.UKCIAPP/73)the Royal Society(Grant No.IEC\NSFC\181321).
文摘Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comparison,a configuration in which both boxes were fixed was also considered.The effects of the heave motion of the upstream box on the wave loads,including the horizontal wave forces,vertical wave forces,and moments on the boxes,were the focus of this study.Numerical analyses showed that all frequencies at which the maximum horizontal wave forces,maximum vertical wave forces,and maximum moment appeared are dependent on the heave motion of the upstream box and that the effects of the heave motion on these frequencies are different.Furthermore,these frequencies were observed to deviate from the corresponding fluid resonant frequency.Moreover,the heave motion of the upstream box reduced the wave forces acting on both boxes and altered the variation trends of the wave forces with the incident wave frequency.
文摘Marine resource exploitation and marine cargo transportation were increasingly frequent. Due to the impact of the marine environment, ships or platforms were affected. In this paper, a servo electric cylinder was used as a wave compensation actuator to design a wave compensation system. The laser sensor was used to measure the displacement in the direction of the heave platform, and the obtained displacement was applied to the wave compensation in the heave direction to verify the feasibility of the compensation system.
基金Project(51974174) supported by the National Natural Science Foundation of ChinaProject(ZR2019YQ26) supported by the Natural Science Foundation of Shandong Province (Excellent Youth Fund),China。
文摘The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate at panel 11505 of the Yushujing Coal Mine as background. First, based on the limit equilibrium method and slip line field theory,a model of floor heave was established, the mechanism of floor heave control was analyzed, and an optimized support method was proposed. Then, the displacement, stress and failure zones around the surrounding rock with the original and optimized support were studied by FLAC. Finally, the serviceability of the support method was verified by field application. The results showed that the main deformation form of soft rock roadway is floor heave, and 0.5 m is relatively reasonable thicknesses of the inverted arch. The extrusion failure zone and shear failure zone were mainly affected by tensile and shear failure, respectively. The modification of floor and the effective support are key points. The failure zone was consistent between numerical simulation and theoretical calculation. The maximum convergences of floor heave determined by numerical simulation and field measurement were 220 mm and 240 mm, respectively, which were reduced by 55% and 60% compared with the original support, and the convergence between sidewalls decreased considerably. The optimized support method controls the floor heave well.
基金provided by the National Natural Science Foundation of China(No.51404256)the National Basic Research Program of China(No.2013CB227900)Fundamental Research Funds for the Central Universities of China(No. 2014QNA51)
文摘Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a U-shaped steel closed support with an inverted U-shaped steel arch in the floor is proposed as a method for improving the support effect of the surrounding rock during the process of floor heaving.This research established a mechanical model for the U-shaped steel closed support,and determined the reaction forces at the connection of a camber angle.Using the limit load method calculated the critical buckling load of the inverted U-shaped steel arch,and use of a strength check method tested the strength of the U-shaped steel material.A numerical simulation was conducted using the finite difference software FLAC3 D.The simulation results show that the U-shaped steel closed support is able to control the floor heave of roadways,which is successfully used in the West 11-2 development roadway of the Zhuji Mine in the Huainan mining area in China.The cumulative floor heave over two years was less than50 mm.
基金Supported by the National Natural Science Foundation of China (50874042) the National Natural Science Foundation of China (51174086)
文摘The mechanism of floor heave was analyzed by establishing mechanics models and solving differential equations. The amount of floor heave is proportional to the abutment pressure of surrounding rock, roadway width, and the distance of support pressure peak to the roadway and is inversely proportional to the elastic modulus of floor rock. Using FLAC2D to simulate floor rock grouting in soft rock roadway verifies the active role of floor rock grouting in the floor controlling of soft rock roadway; floor rock grouting and grouting range directly impact on the stability scope of surrounding rock, namely, with the increase of grouting range, the subsidence of roof, the approach of both sides, and the amount of floor heave decreased gradually, the stability of surrounding rock is enhanced
基金support for this research from the State Key Program of National Natural Science of China (Grant No. 41430634)the National Natural Science Foundation of China (Grant Nos. 41702382, 51578195, 51378161, and 51308547)+1 种基金the Foundation Project Program 973 of China (No. 2012CB026104)the State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology (Grant No. SKLGDUEK1209)
文摘Maximum frost heave of unsaturated frost-susceptible soils,in conjunction with a high water table,is an important consideration for the design of foundations in seasonally frozen regions.Therefore,it is necessary to evaluate accurately and efficiently the maximum frost heave for a given soil.For this purpose,a series of one-sided freezing experiments was conducted on unsaturated silty clay in an open system.Multistage cooling of sufficient duration was applied to the soil sample's top,while constant above-zero temperatures were maintained at the bottom.Then,a simple methodology for calculating maximum frost heave at a given cooling temperature was derived utilizing information obtained within the limited time allotted for each stage.On this basis,an empirical equation for defining maximum frost heave as a function of cooling temperature and overburden pressure was determined.Overall,this study provides a simple and practical procedure that is applicable to the evaluation of maximum frost heave of unsaturated frost-susceptible soils.