期刊文献+
共找到6,566篇文章
< 1 2 250 >
每页显示 20 50 100
Robustα-Fe_(2)O_(3)/Epoxy Resin Superhydrophobic Coatings for Anti-icing Property
1
作者 乔燕明 TAO Xuan +2 位作者 LI Lei 阮敏 鲁礼林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期621-626,共6页
α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ... α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ice adhesion strength(IAS),but the mechanical properties are poor.Theα-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating exhibits good mechanical durability.In addition,compared with the bare aluminum substrate,the Ecorr of the composite coating is positive and the Jcorr is lower.The inhibition efficiency of the composite coating is as high as 99.98%in 3.5 wt%NaCl solution.The difference in the microstructure caused by the two preparation methods leads to the changes in mechanical properties and corrosion resistance of composite superhydrophobic coating. 展开更多
关键词 SUPERHYDROPHOBIC anti-CORROSION anti-icing ROBUST
下载PDF
Study of Flow and Heat Transfer in an Ejector-Driven Swirl Anti-Icing Chamber
2
作者 Yi Tu Yuan Wu Yu Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第5期989-1014,共26页
The formation of ice on the leading edge of aircraft engines is a serious issue,as it can have catastrophic consequences.The Swirl Anti-Icing(SAI)system,driven by ejection,circulates hot fluid within a 360°annula... The formation of ice on the leading edge of aircraft engines is a serious issue,as it can have catastrophic consequences.The Swirl Anti-Icing(SAI)system,driven by ejection,circulates hot fluid within a 360°annular chamber to heat the engine inlet lip surface and prevent icing.This study employs a validated Computational Fluid Dynamics(CFD)approach to study the impact of key geometric parameters of this system on flow and heat transfer characteristics within the anti-icing chamber.Additionally,the entropy generation rate and exergy efficiency are analyzed to assess the energy utilization in the system.The research findings indicate that,within the considered flow range,reducing the nozzle specific areaφfrom 0.03061 to 0.01083 can enhance the ejection coefficient by over 60.7%.This enhancement increases the air circulating rate,thereby intensifying convective heat transfer within the SAI chamber.However,the reduction inφalso leads to a significant increase in the required bleed air pressure and a higher entropy generation rate,indicating lower exergy efficiency.The nozzle angleθnotably affects the distribution of hot and cold spots on the lip surface of the SAI chamber.Increasingθfrom 0°to 20°reduces the maximum temperature difference on the anti-icing chamber surface by 60 K. 展开更多
关键词 Swirl anti-icing heat transfer exergy efficiency hot and cold spot aircraft engine
下载PDF
Numerical simulation of inlet placement on sewage characteristics in the rounded square aquaculture tank with single inlet
3
作者 Xiaozhong REN Yixuan HU +5 位作者 Yinxin ZHOU Shupeng DU Wei SUN Hangfei LIU Chenxu ZHAO Ying LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1359-1382,共24页
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s... To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry. 展开更多
关键词 rounded square aquaculture tank sewage collection characteristic inlet structure computational fluid dynamic
下载PDF
Impact of the Inlet Flow Angle and Outlet Placement on the Indoor Air Quality
4
作者 Ikram Mostefa Tounsi Mustapha Boussoufi +1 位作者 Amina Sabeur Mohammed El Ganaoui 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2603-2616,共14页
This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(... This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity. 展开更多
关键词 Mixed convection air-CO_(2)mixture inlet inclination angles laminarflow indoor air quality
下载PDF
Aerodynamic/stealth design of S-duct inlet based on discrete adjoint method
5
作者 Jun DENG Ke ZHAO +4 位作者 Lin ZHOU Wei ZHANG Bowen SHU Jiangtao HUANG Zhenghong GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期725-746,共22页
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ... It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system. 展开更多
关键词 S-duct inlet aerodynamic/stealth optimization design discrete adjoint upwind scheme multilevel fast multipole algorithm(MLFMA)
下载PDF
Neurosyphilis complicated by anti-γ-aminobutyric acid-B receptor encephalitis: A case report
6
作者 Ya-Xiu Fang Xiao-Ming Zhou +7 位作者 Dong Zheng Guang-Hui Liu Peng-Bo Gao Xiao-Zhen Huang Zhi-Cheng Chen Hui Zhang Lin Chen Ya-Fang Hu 《World Journal of Clinical Cases》 SCIE 2024年第11期1960-1966,共7页
BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secon... BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secondary to neurosyphilis have been reported.We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor(GABABR)AE.CASE SUMMARY A young man in his 30s who presented with acute epileptic status was admitted to a local hospital.He was diagnosed with neurosyphilis,according to serum and cerebrospinal fluid(CSF)tests for syphilis.After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin,epilepsy was controlled but serious cognitive impairment,behavioral,and serious psychiatric symptoms were observed.He was then transferred to our hospital.The Mini-Mental State Examination(MMSE)crude test results showed only 2 points.Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluidattenuated inversion recovery high signals in the white matter surrounding both lateral ventricles,left amygdala and bilateral thalami.Anti-GABABR antibodies were discovered in CSF(1:3.2)and serum(1:100).The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE,and received methylprednisolone and penicillin.Following treatment,his mental symptoms were alleviated.Cognitive impairment was significantly improved,with a MMSE of 8 points.Serum anti-GABABR antibody titer decreased to 1:32.The patient received methylprednisolone and penicillin after discharge.Three months later,the patient’s condition was stable,but the serum anti-GABABR antibody titer was 1:100.CONCLUSION This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy. 展开更多
关键词 anti-γ-aminobutyric acid-B receptor GABABR NEUROSYPHILIS Tissue-based assay Magnetic resonance imaging Mini-mental state examination Case report
下载PDF
State of the art and practice of pavement anti-icing and de-icing techniques 被引量:6
7
作者 WenBing Yu Xin Yi +1 位作者 Ming Guo Lin Chen 《Research in Cold and Arid Regions》 CSCD 2014年第1期14-21,共8页
Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting... Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting, and the advantages and disadvantages of each approach are discussed here, including environmental and structural damage caused by corrosive snow melting agents. New developments in chemical melting agents and mechanical equipment are discussed, and an overview of alternative thermal melting systems is presented, including the use of geothermy and non-geothermal heating systems utilizing solar energy, electricity, conductive pavement materials, and infrared/microwave applications. Strategic recommendations are made for continued enhancement of public safety in snow and ice conditions. 展开更多
关键词 PAVEMENT DE-ICING anti-icing technique freezing rain
下载PDF
Investigation on Preparation and Anti-icing Performance of Superhydrophobic Surface on Aluminum Conductor 被引量:4
8
作者 Hai-yun Jin Shi-chao Nie +2 位作者 Zhi-wei Li Cheng Tong Ke-jing Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第2期216-222,246,共8页
Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on... Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on alurninurn conductor with rnicro-nanostructure was fabricated using the preferential etching principle of crystal defects. The surface rnicrostructure and wettability were investigated by scanning electron microscope and contact angle measurement, respectively. The icing progress was observed with a self-made icing experiment platform at different environment temperature. The results showed that, due to jumping and rolling down of coalesced droplets from SHS of aluminum conductor at low temperature, the formation of icing on SHS could be delayed. Dynamic icing experiment indicated that SHS on aluminum conductor could restrain the formation of icing in certain temperature range, but could not exert influence on the accumulation of icing. This study offers new insight into understanding the anti-icing performance of actual aluminum conductor. 展开更多
关键词 SUPER-HYDROPHOBIC Aluminum conductor Crystal defects Self-propelledjumping anti-icing
下载PDF
Anti-Icing Method Based on Reducing Voltage of Transmission Lines 被引量:2
9
作者 Xiaoming LI Junjie HUANG Youbin ZHOU 《Energy and Power Engineering》 2009年第1期1-6,共6页
The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating ... The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating the ratio of the transformers which install the both ends of the transmission lines. The line current can be increased and the power loss of the transmission lines can also be increased, which means the heat generated by power loss increases and the icing process of the transmission lines can be restrained. When the icing may occur in the atrocious weather, the anti-icing transformers installed the both ends of transmission line are put into operation. The ratios of transformers are regulated to the appropriate value. The current of transmission line can be increased to the value that is a little greater than the critical current, which can realize the purpose of anti-icing. At the same time, the conditions of normal running in the load side are kept invariably, which can ensure the security of power system. This method can be applicable to a wide range. It's an effective measure to prevent the icing of the transmission lines. 展开更多
关键词 anti-icing TRANSFORMER CRITICAL CURRENT
下载PDF
Super-hydrophobic film deposition by an atmospheric-pressure plasma process and its anti-icing characteristics 被引量:1
10
作者 Qinghua HUANG Lin XIONG +5 位作者 Xiaolong DENG Zhan SHU Qiang CHEN Bing BAO Mingli CHEN Qing XIONG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第5期142-150,共9页
In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.P... In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.Plasma synthesized organosilicon(SiOxCyHz)thin films with water contact angle over 160°and sliding angle below 5°,were able to be achieved.FTIR and XPS analysis indicates a large number of hydrocarbon compositions were polymerized in the thin films enduing the latter very-low surface free energy.SEM shows the SH films display micro-nanostructure and with high degree of averaged surface roughness 190 nm evaluated by AFM analysis.From experiments under controlled low-temperature and moisture conditions,the prepared SH surface exhibits good anti-icing effects.Significantly prolonging freezing time was achievable on the SH thin films for both static and sliding water droplets.This investigation demonstrates the anti-icing potentials of SH surface prepared through low-cost simple atmospheric-pressure plasma polymerization process. 展开更多
关键词 HYDROPHOBICITY anti-icing ATMOSPHERIC-PRESSURE PLASMA POLYMERIZATION
下载PDF
Fast Algorithm for Prediction of Airfoil Anti-icing Heat Load 被引量:2
11
作者 Xueqin Bu Rui Yang +2 位作者 Jia Yu Xiaobin Shen Guiping Lin 《Energy and Power Engineering》 2013年第4期493-497,共5页
Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the des... Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the design of a thermal anti-icing system. In order to help the design of the thermal anti-icing system and save the design time, a fast and efficiency method for prediction the anti-icing heat load is investigated. The computation fluid dynamics (CFD) solver and the Messinger model are applied to obtain the snapshots. Examples for the calculation of the anti-icing heat load using the proper orthogonal decomposition (POD) method are presented and compared with the CFD simulation results. It is shown that the heat loads predicted by POD method are in agreement with the CFD computation results. Moreover, it is obviously to see that the POD method is time-saving and can meet the requirement of real-time prediction. 展开更多
关键词 anti-icing Heat Load PROPER ORTHOGONAL DECOMPOSITION
下载PDF
Design and Development of Anti-Icing Aluminum Surface 被引量:1
12
作者 Yongxin Wang Daniel Orol +2 位作者 Jeffery Owens Katherine Simpson Hoon Joo Lee 《Materials Sciences and Applications》 2013年第6期347-356,共10页
An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its su... An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its surface tension and increasing the roughness of the surface. On a highly hydrophobic surface, water has a high contact angle and it can easily rolls off, carrying surface dirt and debris with it. Super-cooled water or freezing rain can also run off this highly hydrophobic surface instead of forming ice on the surface, due to the reduction of the liquid-solid adhesion. This property can also help a surface to get rid of the ice after the water becomes frozen. In this study, a Cassie-Baxter rough surface was modeled, and an aluminum panel was physically and chemically modified based on the modeled structure. Good agreement was found between predicted values and experimental results for the contact and roll-off angles of water. Most importantly, by creating this highly hydrophobic aluminum rough surface, the anti-icing and de-icing properties of the modified surface were drastically improved compared to the control aluminum surface, and the cost will be reduced. 展开更多
关键词 anti-icing DE-ICING WETTING HYDROPHOBIC ALUMINUM
下载PDF
An Abrasion Resistant TPU/SH-SiO_(2) Superhydrophobic Coating for Anti-Icing and Anti-Corrosion Applications
13
作者 Jiakun Shi Bizhu Zhang +4 位作者 Xin Zhou Runxian Liu Jun Hu Huaan Zheng Zhong Chen 《Journal of Renewable Materials》 SCIE EI 2022年第5期1239-1255,共17页
As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pol... As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications. 展开更多
关键词 COATING SUPERHYDROPHOBIC abrasion resistance anti-icing anti-CORROSION
下载PDF
2015 -07 -62 Research on the anti-haze technol. ogy of gas turbine inlet system
14
《华电技术》 CAS 2015年第7期79-79,共1页
This paper briefly introduced the structure and compo- sition of gas turbine inlet air filtration system, and analyzed the reason why inlet air titration system cannot adapt to bad weather. Meanwhile, some optimized t... This paper briefly introduced the structure and compo- sition of gas turbine inlet air filtration system, and analyzed the reason why inlet air titration system cannot adapt to bad weather. Meanwhile, some optimized transformation plans are proposed in this paper, such as arranging the coarse filter G3 in the anti- freeze warehouse and adding medium efficiency filter M5 etc. Furthermore, the net benefit in the first year after the optimized transformation is calculated. These optimized transformation plans could effectively decrease the rising velocity of air inlet system's total pressure differences, reduce the workload and costs of maintenancing air inlet system, extent the lifespan of fine cartridge, enhance the adaptability against bad weather of unit, improve the security and stability of unit operation and in- crease the economic benefit of unit, which is worth of populari- zation and application in the optimized transformation of similar gas turbine inlet system. 展开更多
关键词 gas TURBINE inlet air FILTRATION system optimizedtransformation PLANS economic BENEFIT
下载PDF
某300MW机组高压进汽结构气动优化
15
作者 刘志德 刘云锋 +1 位作者 管伟诗 魏红阳 《汽轮机技术》 北大核心 2024年第1期7-8,共2页
采用数值模拟的方法对某300MW汽轮机的高压进汽结构进行了气动优化,通过增大关键部位通流面积、增大过渡倒圆,降低了流速,总压损失由4.11%降低到0.045%,出口静压不均匀度由0.67降低到0.020。
关键词 汽轮机 高压进汽 气动优化
下载PDF
竖井式进出水口水力特性研究进展
16
作者 高学平 袁野 +1 位作者 朱洪涛 刘殷竹 《水力发电学报》 CSCD 北大核心 2024年第9期13-26,共14页
竖井式进出水口是抽水蓄能电站水道系统两端控制水流的常用进出水口型式之一。竖井式进出水口双向过流,水流在短距离内经历两次90°流向转变(水平-竖直-水平),流向变化剧烈,水力条件复杂,深入研究竖井式进出水口水力特性,进而优化... 竖井式进出水口是抽水蓄能电站水道系统两端控制水流的常用进出水口型式之一。竖井式进出水口双向过流,水流在短距离内经历两次90°流向转变(水平-竖直-水平),流向变化剧烈,水力条件复杂,深入研究竖井式进出水口水力特性,进而优化其体型结构,对抽水蓄能电站设计及施工具有重要意义。首先,介绍竖井式进出水口应用背景及体型特点,分析竖井式进出水口水力特性存在的问题;其次,对竖井式进出水口孔口流量分配、拦污栅断面流速分布、漩涡和水头损失等方面研究进展进行总结;最后,归纳了竖井式进出水口水力特性研究方法,探讨了今后研究应聚焦的主要方向。 展开更多
关键词 抽水蓄能电站 竖井式进出水口 水力特性 研究方法
下载PDF
T型微通道入口角度对剪切变稀流体微液滴制备影响
17
作者 邢雷 綦航 +3 位作者 蒋明虎 张爽 韩国鑫 关帅 《高校化学工程学报》 EI CAS CSCD 北大核心 2024年第3期422-431,共10页
为了研究T型微通道入口角度对非牛顿微液滴制备影响,采用流体体积(VOF)模型对聚丙烯酰胺水溶液微液滴形成过程进行数值模拟,开展高速数码显微实验对数值模拟结果进行验证。结果表明:在相同工况条件下,非牛顿微液滴生成频率随着分散相入... 为了研究T型微通道入口角度对非牛顿微液滴制备影响,采用流体体积(VOF)模型对聚丙烯酰胺水溶液微液滴形成过程进行数值模拟,开展高速数码显微实验对数值模拟结果进行验证。结果表明:在相同工况条件下,非牛顿微液滴生成频率随着分散相入口角度的增大呈先增大后减小的趋势,相对长度呈现先减小后增大的趋势。在入口角度小于90°时,随着入口角度的增加,微通道内两相平均压差、液滴断裂时刻两相压差最低值随之升高,在入口角度大于90°时,上述压差则随着入口角度的增加而降低。考虑两相体积流量比与连续相毛细数并引入关于分散相入口角度的修正系数,提出聚丙烯酰胺水溶液微液滴相对长度预测公式,为剪切变稀流体微液滴制备提供参考。 展开更多
关键词 微通道 非牛顿流体 入口角度 毛细数 微液滴
下载PDF
进液量对气举式同向出流旋流器分离特性影响
18
作者 刘彩玉 郑九洲 +1 位作者 李枫 张勇 《机械设计与制造》 北大核心 2024年第2期165-169,共5页
为了提高旋流器的分离效率,提出一种气举式同向出流水力旋流器结构,通过注气的方式将旋流器轴心的油核举升至溢流口,加速油核向溢流口方向运动,进而提升旋流器的分离性能。基于雷诺应力模型(Reynolds Stress Model,RSM)与多相流模型(Mix... 为了提高旋流器的分离效率,提出一种气举式同向出流水力旋流器结构,通过注气的方式将旋流器轴心的油核举升至溢流口,加速油核向溢流口方向运动,进而提升旋流器的分离性能。基于雷诺应力模型(Reynolds Stress Model,RSM)与多相流模型(Mixture),模拟计算了入口进液量对气举式同向出流旋流器分离性能的影响,分析了进液量对旋流器内气核形态、速度场分布以及分离性能的影响规律。数值模拟结果表明:进液量分布在(3.6~8.4)m^(3)/h范围内时,随着进液量的增加,注气口处压力逐渐增大,混合液内各相介质的轴向速度与径向速度均有显著提高,旋流器轴心处的油相体积分数明显增大,旋流器的分离效率从64%增至77.9%。 展开更多
关键词 进液量 旋流器 同向出流 数值模拟 分离效率
下载PDF
宽速域可调进气道密封腔流动特性研究
19
作者 刘胜 夏枫 +2 位作者 满延进 陈港毓 孙波 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第9期167-174,共8页
为了满足高超声速飞行器的宽速域进气需求,一般考虑使用可调进气道,此时进气道内部需要安装动密封结构。陶瓷栅片密封凭借其优异的耐磨损性和抗高温氧化能力是最理想的选择。使用陶瓷栅片作为密封件后,密封室内会形成受侧板边界层影响... 为了满足高超声速飞行器的宽速域进气需求,一般考虑使用可调进气道,此时进气道内部需要安装动密封结构。陶瓷栅片密封凭借其优异的耐磨损性和抗高温氧化能力是最理想的选择。使用陶瓷栅片作为密封件后,密封室内会形成受侧板边界层影响的三维空腔流动。以密封腔模型为基础,提出对密封腔流动和泄漏通道流动解耦化处理,并分别对进气道密封模型和泄漏模型进行了建模。利用数值模拟方法,改变来流边界层厚度以及来流速度研究不同来流条件对长密封腔结构类型流动特性及泄漏规律的影响。分析发现,长密封腔在Ma4.5高超声速来流下表现为开式空腔流动,对边界层厚度以及来流马赫数的变化相较于短密封腔更为敏感;来流马赫数的改变使得密封腔内流动结构变化较大,相应泄漏通道的入口压力分布也存在很大区别。 展开更多
关键词 高速飞行器 可调进气道 栅片密封 长密封腔 数值模拟
下载PDF
两侧进气的S弯进气道气动隐身特性研究
20
作者 黄爱凤 展凤江 盛思佳 《计算机仿真》 2024年第9期13-17,25,共6页
基于多层快速多极子方法和有限体积法,建立了两侧进气S弯进气道的电磁散射和气动仿真模型,对其雷达散射截面(RCS)和气动特性进行了数值研究。对比分析了进口形状和偏距这两个主要几何参数对进气道RCS和总压恢复系数的影响规律。仿真结... 基于多层快速多极子方法和有限体积法,建立了两侧进气S弯进气道的电磁散射和气动仿真模型,对其雷达散射截面(RCS)和气动特性进行了数值研究。对比分析了进口形状和偏距这两个主要几何参数对进气道RCS和总压恢复系数的影响规律。仿真结果表明,(1)等边三角形进口的进气道隐身性能较好,RCS随偏距减小;(2)梯形进口进气道的隐身性能对极化方向较为敏感,偏距以刚好遮挡发动机为宜;(3)进口形状对气动性能的影响大于偏距的影响,梯形进口进气道气动性能优于三角进口,但差别不大;(4)综合比较气动和隐身性能,等边三角形进口进气道最优,适当增加偏距可以以较小的气动损失大大提升隐身性能。 展开更多
关键词 两侧进气进气道 气动特性 雷达散射截面 影响因素
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部