The bonding process of space solar cells is a very complicated task undertaken by manual labor before.An automatic approach based on robot technology is presented to deal with the difficult problem.The architecture of...The bonding process of space solar cells is a very complicated task undertaken by manual labor before.An automatic approach based on robot technology is presented to deal with the difficult problem.The architecture of the bonding robot for space solar cells is described.The two processes carried out by the robot,adhesive dispensing and cover-glass bonding,are studied.Based on the mechanical model,the flow velocity field of the adhesive in needles is obtained and the cover-glass bonding theory is interpreted.According to the studies,the thickness of the adhesive can be controlled accurately by robot and bubbles can be avoided coming about inside the adhesive.展开更多
Biomaterials and medical devices are broadly used in the diagnosis,treatment,repair,replacement or enhancing functions of human tissues or organs.Although the living conditions of human beings have been steadily impro...Biomaterials and medical devices are broadly used in the diagnosis,treatment,repair,replacement or enhancing functions of human tissues or organs.Although the living conditions of human beings have been steadily improved in most parts of the world,the incidence of major human’s diseases is still rapidly growing mainly because of the growth and aging of population.The compound annual growth rate of biomaterials and medical devices is projected to maintain around 10%in the next 10 years;and the global market sale of biomaterials and medical devices is estimated to reach$400 billion in 2020.In particular,the annual consumption of polymeric biomaterials is tremendous,more than 8000 kilotons.The compound annual growth rate of polymeric biomaterials and medical devices will be up to 15-30%.As a result,it is critical to address some widespread concerns that are associated with the biosafety of the polymer-based biomaterials and medical devices.Our group has been actively worked in this direction for the past two decades.In this review,some key research results will be highlighted.展开更多
文摘The bonding process of space solar cells is a very complicated task undertaken by manual labor before.An automatic approach based on robot technology is presented to deal with the difficult problem.The architecture of the bonding robot for space solar cells is described.The two processes carried out by the robot,adhesive dispensing and cover-glass bonding,are studied.Based on the mechanical model,the flow velocity field of the adhesive in needles is obtained and the cover-glass bonding theory is interpreted.According to the studies,the thickness of the adhesive can be controlled accurately by robot and bubbles can be avoided coming about inside the adhesive.
基金This work was supported by the National Natural Science Foundation of China(Project Numbers:21274150,51473167 and 51273200)Chinese Academy of Sciences-WEGO Group High-Tech Research&Development Program and Scientific Development Program of Jilin Province(20130102064JC).
文摘Biomaterials and medical devices are broadly used in the diagnosis,treatment,repair,replacement or enhancing functions of human tissues or organs.Although the living conditions of human beings have been steadily improved in most parts of the world,the incidence of major human’s diseases is still rapidly growing mainly because of the growth and aging of population.The compound annual growth rate of biomaterials and medical devices is projected to maintain around 10%in the next 10 years;and the global market sale of biomaterials and medical devices is estimated to reach$400 billion in 2020.In particular,the annual consumption of polymeric biomaterials is tremendous,more than 8000 kilotons.The compound annual growth rate of polymeric biomaterials and medical devices will be up to 15-30%.As a result,it is critical to address some widespread concerns that are associated with the biosafety of the polymer-based biomaterials and medical devices.Our group has been actively worked in this direction for the past two decades.In this review,some key research results will be highlighted.