Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo...Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.展开更多
In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the c...In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.展开更多
A nanomicelle(denoted as TPGS/Ppa)was fabricated via the coassembly of the amphiphilic D-α-tocopheryl polyethylene glycol 1000 succinate(TPGS)and the hydrophobic photosensitizer pyropheophorbide a(Ppa)for photodynami...A nanomicelle(denoted as TPGS/Ppa)was fabricated via the coassembly of the amphiphilic D-α-tocopheryl polyethylene glycol 1000 succinate(TPGS)and the hydrophobic photosensitizer pyropheophorbide a(Ppa)for photodynamic therapy(PDT).The obtained nanomicelle possessed a spherical structure with a diameter of(18.0±2.2)nm and a zeta potential of approximately -18 mV.Besides,the nanomicelle exhibited excellent photostability,biocompatibility,and phototoxicity,and could effectively reach the tumor region via the enhanced permeability and retention effect.Additionally,it could be found that the TPGS/Ppa nanomicelle exhibited higher phototoxicity against 4T1 murine mammary cancer cells than free Ppa.In the 4T1 tumor-bearing mouse model,the nanomicelle showed an excellent antitumor therapeutic effect.This study develops a new type of photodynamic nanomicelle TPGS/Ppa,which can increase the accumulation of drugs and prolong their tumor retention time,providing a feasible strategy for realizing the delivery of small-molecule hydrophobic drugs and tumor PDT.展开更多
Autism spectrum disorder(ASD)is a complex neurodevelopmental disorder affecting over 2%of the global population,marked by social communication deficits and repetitive behaviors.Kabatas et al explored the efficacy and ...Autism spectrum disorder(ASD)is a complex neurodevelopmental disorder affecting over 2%of the global population,marked by social communication deficits and repetitive behaviors.Kabatas et al explored the efficacy and safety of Wharton’s jelly-derived mesenchymal stem cell(WJ-MSC)therapy in a 4-year-old child with ASD.Using the childhood autism rating scale and Denver II develop-mental screening test,significant improvements were seen after six WJ-MSC sessions,with no adverse events over 2 years.Despite promising results,the study’s single-case design limits generalizability.Larger,multi-center trials are needed to validate the findings and assess long-term effects of WJ-MSC therapy in ASD.展开更多
BACKGROUND Liver fibrosis and cirrhosis are global medical challenges that require safe and effective treatments.In the past two decades,there has been a surge in research on stem cell therapy for liver fibrosis and c...BACKGROUND Liver fibrosis and cirrhosis are global medical challenges that require safe and effective treatments.In the past two decades,there has been a surge in research on stem cell therapy for liver fibrosis and cirrhosis.This study aimed to conduct a comprehensive analysis of the research hotspots and trends in this field through bibliometrics.sters was conducted.RESULTS As of September 20,2024,a total of 1935 documents were retrieved dating from 2004 to 2024,with 1186 strongly relevant publications obtained after screening.China,the United States,and Japan were the major contributors in this field.Cairo University,Zhejiang University and Yamaguchi University were the major institution in this field.The journal Stem Cell Research&Therapy published the most papers.There were 686 authors,with Shuji Terai,Isao Sakaida,Soon Koo Baik,and Lanjuan Li publishing the most papers.The research focused on alcoholic cirrhosis and nonalcoholic fatty liver disease.The emerging areas of interest were extracellular vesicles,exosomes,and their enriched microRNAs.The field is experiencing rapid growth due to the changing research trends and increasing literature.CONCLUSION These findings provide a thorough overview of stem cell therapy in the field of liver fibrosis and cirrhosis.展开更多
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ...Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.展开更多
Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and par...Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and paracrine abilities give hope for neuroprotection.Recent studies on SC modification have enhanced therapeutic effects for IS,including gene transfection,nanoparticle modification,biomaterial modification and pretreatment.Thesemethods improve survival rate,homing,neural differentiation,and paracrine abilities in ischemic areas.However,many problems must be resolved before SC therapy can be clinically applied.These issues include production quality and quantity,stability during transportation and storage,as well as usage regulations.Herein,we reviewed the brief pathogenesis of IS,the“multi-mechanism”advantages of SCs for treating IS,various SC modification methods,and SC therapy challenges.We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.展开更多
Advanced LUAD shows limited response to treatment including immune therapy.With the development of sequencing omics,it is urgent to combine high-throughput multi-omics data to identify new immune checkpoint therapeuti...Advanced LUAD shows limited response to treatment including immune therapy.With the development of sequencing omics,it is urgent to combine high-throughput multi-omics data to identify new immune checkpoint therapeutic response markers.Using GSE72094(n=386)and GSE31210(n=226)gene expression profile data in the GEO database,we identified genes associated with lung adenocarcinoma(LUAD)death using tools such as“edgeR”and“maftools”and visualized the characteristics of these genes using the“circlize”R package.We constructed a prognostic model based on death-related genes and optimized the model using LASSO-Cox regression methods.By calculating the cell death index(CDI)of each individual,we divided LUAD patients into high and low CDI groups and examined the relationship between CDI and overall survival time by principal component analysis(PCA)and Kaplan-Meier analysis.We also used the“ConsensusClusterPlus”tool for unsupervised clustering of LUAD subtypes based on model genes.In addition,we collected data on the expression of immunomodulatory genes and model genes for each cohort and performed tumor microenvironment analyses.We also used the TIDE algorithm to predict immunotherapy responses in the CDI cohort.Finally,we studied the effect of PRKCD on the proliferation and migration of LUAD cells through cell culture experiments.The study utilized the TCGA-LUAD cohort(n=493)and identified 2,901 genes that are differentially expressed in patients with LUAD.Through KEGG and GO enrichment analysis,these genes were found to be involved in a wide range of biological pathways.The study also used univariate Cox regression models and LASSO regression analyses to identify 17 candidate genes that were best associated with mortality prognostic risk scores.By comparing the overall survival(OS)outcomes of patients with different CDI values,it was found that increased CDI levels were significantly associated with lower OS rates.In addition,the study used unsupervised cluster analysis to divide 115 LUAD patients into two distinct clusters with significant differences in OS timing.Finally,a prognostic indicator called CDI was established and its feasibility as an independent prognostic indicator was evaluated by Cox proportional risk regression analysis.The immunotherapy efficacy was more sensitive in the group with high expression of programmed cell death models.Relationship between programmed cell death(PCD)signature models and drug reactivity.After evaluating the median inhibitory concentration(IC50)of various drugs in LUAD samples,statistically significant differences in IC50 values were found in cohorts with high and low CDI status.Specifically,Gefitinib and Lapatinib had higher IC50 values in the high-CDI cohort,while Olaparib,Oxaliplatin,SB216763,and Axitinib had lower values.These results suggest that individuals with high CDI levels are sensitive to tyrosine kinase inhibitors and may be resistant to conventional chemotherapy.Therefore,this study constructed a gene model that can evaluate patient immunotherapy by using programmed cell death-related genes based on muti-omics.The CDI index composed of these programmed cell death-related genes reveals the heterogeneity of lung adenocarcinoma tumors and serves as a prognostic indicator for patients.展开更多
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Altho...Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.展开更多
Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to...Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40,CD80,CD83,and CD86.Method This was a cross-sectional study in which patients were divided into a natural history group(namely NH group),a long-term oral nucleoside analogs treatment group(namely NA group),and a plateau-arriving group(namely P group).The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer.Results In total,143 patients were enrolled(NH group,n=49;NA group,n=47;P group,n=47).The results demonstrated that CD141/CD1c double negative myeloid dendritic cell(DNmDC)/lymphocytes and monocytes(%)in P group(0.041[0.024,0.069])was significantly lower than that in NH group(0.270[0.135,0.407])and NA group(0.273[0.150,0.443]),and CD86 mean fluorescence intensity of DNmDCs in P group(1832.0[1484.0,2793.0])was significantly lower than that in NH group(4316.0[2958.0,5169.0])and NA group(3299.0[2534.0,4371.0]),Adjusted P all<0.001.Conclusion Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.展开更多
Objective:This systematic review aimed to analyze animal and human trial data to better understand the efficacy of stem cell therapy (SCT) for erectile dysfunction (ED) and the obstacles that may hinder its applicatio...Objective:This systematic review aimed to analyze animal and human trial data to better understand the efficacy of stem cell therapy (SCT) for erectile dysfunction (ED) and the obstacles that may hinder its application in this field.Methods:We searched electronic databases, including PubMed and Scopus, for published studies with the Medical Subject Heading terms of “erectile dysfunction” (AND) “stem cell therapy” (OR) “erectile dysfunction” (AND) “clinical trial of stem cell therapy” (OR) “stem cell therapy” (AND) “sexual dysfunction”. The search was limited to English-language journals and full papers only. The initial search resulted in 450 articles, of which 90 relevant to our aims were included in the analysis.Results:ED is a multifactorial disease. Current treatment options rely on pharmacotherapy as well as surgical options. Patients may have side effects or unsatisfactory results following the use of these treatment options. SCT may restore pathophysiological changes leading to ED rather than treating the symptoms. It has been evaluated in animal models and shown promising results in humans. Results: confirm that SCT does improve erectile function in animals with different types of SC use. In humans, evidence showed promising results, but the trials were heterogeneous and limited mainly by a lack of randomization and the small sample size. Many challenges could limit future research in this field, including ethical dilemmas, regulation, patient recruitment, the cost of therapy, and the lack of a standardized SCT regimen. Repairing and possibly replacing diseased cells, tissue, or organs and eventually retrieving normal function should always be the goals of any therapy, and this can only be guaranteed by SCT.Conclusion:SCT is a potential and successful treatment for ED, particularly in patients who are resistant to the classic therapy. SCT may promote nerve regeneration and vascular cell regeneration, not only symptomatic treatment.展开更多
Advances in chimeric antigen receptor(CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies.However,progress is still hindered as clinical b...Advances in chimeric antigen receptor(CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies.However,progress is still hindered as clinical benefit is only available for a fraction of patients.A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice.Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design,guide gene-based T cell modification,and optimize the CAR-T manufacturing conditions,and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes.The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities.In this review,we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies.We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy.Specifically,we provide an overview of single-cell studies focusing on target antigens,CAR-transgene integration,and preclinical research and clinical applications,and then discuss how it will affect the future of CAR-T cell therapy.展开更多
Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep...Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.展开更多
Retinitis pigmentosa(RP)is a group of genetic disorders characterized by progressive degeneration of photoreceptors and retinal pigment epithelium(RPE)cells.Its main clinical manifestations include night blindness and...Retinitis pigmentosa(RP)is a group of genetic disorders characterized by progressive degeneration of photoreceptors and retinal pigment epithelium(RPE)cells.Its main clinical manifestations include night blindness and progressive loss of peripheral vision,making it a prevalent debilitating eye disease that significantly impacts patients’quality of life.RP exhibits significant phenotypic and genetic heterogeneity.For instance,numerous abnormal genes are implicated in RP,resulting in varying clinical presentations,disease progression rates,and pathological characteristics among different patients.Consequently,gene therapy for RP poses challenges due to these complexities.However,stem cells have garnered considerable attention in the field of RPE therapy since both RPE cells and photoreceptors can be derived from stem cells.In recent years,a large number of animal experiments and clinical trials based on stem cell transplantation attempts,especially cord blood mesenchymal stem cell(MSC)transplantation and bone marrow-derived MSC transplantation,have confirmed that stem cell therapy can effectively and safely improve the outer retinal function of the RP-affected eye.However,stem cell therapy also has certain limitations,such as the fact that RP patients may involve multiple types of retinal cytopathia,which brings great challenges to stem cell transplantation therapy,and further research is needed to solve various problems faced by this approach in the clinic.Through comprehensive analysis of the etiology and histopathological changes associated with RP,this study substantiates the efficacy and safety of stem cell therapy based on rigorous animal experimentation and clinical trials,while also highlighting the existing limitations that warrant further investigation.展开更多
The burgeoning field of bioengineering has witnessed significant strides due to the advent of stem cell models,particularly in their application in advanced therapy medicinal products(ATMPs).In this review,we examine ...The burgeoning field of bioengineering has witnessed significant strides due to the advent of stem cell models,particularly in their application in advanced therapy medicinal products(ATMPs).In this review,we examine the multifaceted impact of these developments,emphasizing the potential of stem cell models to enhance the sophistication of ATMPs and to offer alternatives to animal testing.Stem cell-derived tissues are particularly promising because they can reshape the preclinical landscape by providing more physiologically relevant and ethically sound platforms for drug screening and disease modelling.We also discuss the critical challenges of reproducibility and accuracy in measurements to ensure the integrity and utility of stem cell models in research and application.Moreover,this review highlights the imperative of stem cell models to align with regulatory standards,ensuring using stem cells in ATMPs translates into safe and effective clinical therapies.With regulatory approval serving as a gateway to clinical adoption,the collaborative efforts between scientists and regulators are vital for the progression of stem cell applications from bench to bedside.We advocate for a balanced approach that nurtures innovation within the framework of rigorous validation and regulatory compliance,ensuring that stem cell-base solutions are maximized to promote public trust and patient health in ATMPs.展开更多
Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis an...Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.展开更多
Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and im...Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and immune escape of CRC.MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells,including T and natural killer cells,as well as by inducing the proliferation of immunosuppressive cells,such as regulatory T cells and tumor-associated macrophages,which,in turn,promote the growth of cancer cells.Thus,MDSCs are key contributors to the emergence of an immunosup-pressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity.In this narrative review,we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment,the current therapeutic approaches and technologies targeting MDSCs,and the therapeutic potential of modulating MDSCs in CRC treatment.This study provides ideas and methods to enhance survival rates in patients with CRC.展开更多
BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare,highly invasive malignant neoplasm.There is no universally accepted standard of care because of its rarity and the dearth of prospective research...BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare,highly invasive malignant neoplasm.There is no universally accepted standard of care because of its rarity and the dearth of prospective research.It is still challenging for some patients to achieve persistent clinical remission or cure,despite the success of allogeneic hematopoietic stem cell transplantation(allo-HSCT),indicating that there is still a significant recurrence rate.We report a case of prevention of BPDCN allograft recurrence by azacitidine maintenance therapy and review the relevant literature.CASE SUMMARY We report a 41-year-old man with BPDCN who was admitted to hospital due to skin sclerosis for>5 mo’duration.BPDCN was diagnosed by combined clinical assessment and laboratory examinations.Following diagnosis,the patients underwent induction consolidation chemotherapy to achieve the first complete remission,followed by bridging allo-HSCT.Post-transplantation,azacitidine(75 mg/m2 for 7 d)was administered as maintenance therapy,with repeat administration every 4–6 wk and appropriate extension of the chemotherapy cycle.After 10 cycles,the patient has been disease free for 26 mo after transplantation.Regular assessments of bone marrow morphology,minimal residual disease,full donor chimerism,Epstein–Barr virus,and cytomegalovirus all yielded normal results with no abnormalities detected.CONCLUSION Azacitidine may be a safe and effective maintenance treatment for BPDCN following transplantation because there were no overt adverse events during the course of treatment.展开更多
文摘Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.
基金supported by Ohio State Start Up FundNational Institutes of Health(NIH)+12 种基金Department of Defense(DoD)Wings for Life Spinal Cord Research Foundation,Wings for Life Spinal Cord Research Foundation(Austria)California Institute of Regenerative Medicine(CIRM)International Spinal Research Trust(United Kingdom)Stanford University Bio-X Program Interdisciplinary Initiatives Seed Grant IIP-7Dennis Chan FoundationKlein Family FundLucile Packard Foundation for Children's HealthStanford Institute for Neuro-Innovation and Translational Neurosciences(SINTN)Saunders Family Neuroscience FundJames Doty Neurosurgery FundHearst Neuroscience FundEileen Bond Research Fund(to GP)。
文摘In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.
文摘A nanomicelle(denoted as TPGS/Ppa)was fabricated via the coassembly of the amphiphilic D-α-tocopheryl polyethylene glycol 1000 succinate(TPGS)and the hydrophobic photosensitizer pyropheophorbide a(Ppa)for photodynamic therapy(PDT).The obtained nanomicelle possessed a spherical structure with a diameter of(18.0±2.2)nm and a zeta potential of approximately -18 mV.Besides,the nanomicelle exhibited excellent photostability,biocompatibility,and phototoxicity,and could effectively reach the tumor region via the enhanced permeability and retention effect.Additionally,it could be found that the TPGS/Ppa nanomicelle exhibited higher phototoxicity against 4T1 murine mammary cancer cells than free Ppa.In the 4T1 tumor-bearing mouse model,the nanomicelle showed an excellent antitumor therapeutic effect.This study develops a new type of photodynamic nanomicelle TPGS/Ppa,which can increase the accumulation of drugs and prolong their tumor retention time,providing a feasible strategy for realizing the delivery of small-molecule hydrophobic drugs and tumor PDT.
文摘Autism spectrum disorder(ASD)is a complex neurodevelopmental disorder affecting over 2%of the global population,marked by social communication deficits and repetitive behaviors.Kabatas et al explored the efficacy and safety of Wharton’s jelly-derived mesenchymal stem cell(WJ-MSC)therapy in a 4-year-old child with ASD.Using the childhood autism rating scale and Denver II develop-mental screening test,significant improvements were seen after six WJ-MSC sessions,with no adverse events over 2 years.Despite promising results,the study’s single-case design limits generalizability.Larger,multi-center trials are needed to validate the findings and assess long-term effects of WJ-MSC therapy in ASD.
基金Supported by the School-Level Project Fund of Chongqing Medical and Pharmaceutical College,No.Ygzrc2023109the Science and Technology Research Program of Chongqing Municipal Education Commission,No.KJQN202302822+1 种基金the Special Fund for Agro-Scientific Research in The Public Interest,No.201303040-05the Special Project for Fundamental Work of Science and Technology,No.2013FY110600-03.
文摘BACKGROUND Liver fibrosis and cirrhosis are global medical challenges that require safe and effective treatments.In the past two decades,there has been a surge in research on stem cell therapy for liver fibrosis and cirrhosis.This study aimed to conduct a comprehensive analysis of the research hotspots and trends in this field through bibliometrics.sters was conducted.RESULTS As of September 20,2024,a total of 1935 documents were retrieved dating from 2004 to 2024,with 1186 strongly relevant publications obtained after screening.China,the United States,and Japan were the major contributors in this field.Cairo University,Zhejiang University and Yamaguchi University were the major institution in this field.The journal Stem Cell Research&Therapy published the most papers.There were 686 authors,with Shuji Terai,Isao Sakaida,Soon Koo Baik,and Lanjuan Li publishing the most papers.The research focused on alcoholic cirrhosis and nonalcoholic fatty liver disease.The emerging areas of interest were extracellular vesicles,exosomes,and their enriched microRNAs.The field is experiencing rapid growth due to the changing research trends and increasing literature.CONCLUSION These findings provide a thorough overview of stem cell therapy in the field of liver fibrosis and cirrhosis.
基金supported by the National Natural Science Foundation of China,No.31960120Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(both to ZW).
文摘Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.
基金supported by the National Natural Science Foundation of China(U22A20383,82003668)the Natural Science Foundation of Zhejiang Province(LD22H300002,LQ21H300002)Ningbo Technology Innovation 2025 Major Special Project(2022Z150).
文摘Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and paracrine abilities give hope for neuroprotection.Recent studies on SC modification have enhanced therapeutic effects for IS,including gene transfection,nanoparticle modification,biomaterial modification and pretreatment.Thesemethods improve survival rate,homing,neural differentiation,and paracrine abilities in ischemic areas.However,many problems must be resolved before SC therapy can be clinically applied.These issues include production quality and quantity,stability during transportation and storage,as well as usage regulations.Herein,we reviewed the brief pathogenesis of IS,the“multi-mechanism”advantages of SCs for treating IS,various SC modification methods,and SC therapy challenges.We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
基金National Natural Science Foundation of China(Grant No.81273297)Shenyang Science and Technology Plan.Public Health R&D Special Project(21-173-9-67).
文摘Advanced LUAD shows limited response to treatment including immune therapy.With the development of sequencing omics,it is urgent to combine high-throughput multi-omics data to identify new immune checkpoint therapeutic response markers.Using GSE72094(n=386)and GSE31210(n=226)gene expression profile data in the GEO database,we identified genes associated with lung adenocarcinoma(LUAD)death using tools such as“edgeR”and“maftools”and visualized the characteristics of these genes using the“circlize”R package.We constructed a prognostic model based on death-related genes and optimized the model using LASSO-Cox regression methods.By calculating the cell death index(CDI)of each individual,we divided LUAD patients into high and low CDI groups and examined the relationship between CDI and overall survival time by principal component analysis(PCA)and Kaplan-Meier analysis.We also used the“ConsensusClusterPlus”tool for unsupervised clustering of LUAD subtypes based on model genes.In addition,we collected data on the expression of immunomodulatory genes and model genes for each cohort and performed tumor microenvironment analyses.We also used the TIDE algorithm to predict immunotherapy responses in the CDI cohort.Finally,we studied the effect of PRKCD on the proliferation and migration of LUAD cells through cell culture experiments.The study utilized the TCGA-LUAD cohort(n=493)and identified 2,901 genes that are differentially expressed in patients with LUAD.Through KEGG and GO enrichment analysis,these genes were found to be involved in a wide range of biological pathways.The study also used univariate Cox regression models and LASSO regression analyses to identify 17 candidate genes that were best associated with mortality prognostic risk scores.By comparing the overall survival(OS)outcomes of patients with different CDI values,it was found that increased CDI levels were significantly associated with lower OS rates.In addition,the study used unsupervised cluster analysis to divide 115 LUAD patients into two distinct clusters with significant differences in OS timing.Finally,a prognostic indicator called CDI was established and its feasibility as an independent prognostic indicator was evaluated by Cox proportional risk regression analysis.The immunotherapy efficacy was more sensitive in the group with high expression of programmed cell death models.Relationship between programmed cell death(PCD)signature models and drug reactivity.After evaluating the median inhibitory concentration(IC50)of various drugs in LUAD samples,statistically significant differences in IC50 values were found in cohorts with high and low CDI status.Specifically,Gefitinib and Lapatinib had higher IC50 values in the high-CDI cohort,while Olaparib,Oxaliplatin,SB216763,and Axitinib had lower values.These results suggest that individuals with high CDI levels are sensitive to tyrosine kinase inhibitors and may be resistant to conventional chemotherapy.Therefore,this study constructed a gene model that can evaluate patient immunotherapy by using programmed cell death-related genes based on muti-omics.The CDI index composed of these programmed cell death-related genes reveals the heterogeneity of lung adenocarcinoma tumors and serves as a prognostic indicator for patients.
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
基金supported by the National Key Research and Development Program of China,No.2018YFA0108602the CAMS Initiative for Innovative Medicine,No.2021-1-I2M-019the National High Level Hospital Clinical Research Funding,No.2022-PUMCH-C-042(all to XB).
文摘Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.
基金supported by the National Key Research and Development Program[2022YFC2603500,2022YFC2603505]Capital Clinical Diagnostic Techniques and Translational Application Projects(Z211100002921059)+2 种基金Capital’s Funds for Health Improvement and Research[2022-1-2172]Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support[XMLX 202127]National Science and Technology Major Project of China[2017ZX10203202-003]。
文摘Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40,CD80,CD83,and CD86.Method This was a cross-sectional study in which patients were divided into a natural history group(namely NH group),a long-term oral nucleoside analogs treatment group(namely NA group),and a plateau-arriving group(namely P group).The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer.Results In total,143 patients were enrolled(NH group,n=49;NA group,n=47;P group,n=47).The results demonstrated that CD141/CD1c double negative myeloid dendritic cell(DNmDC)/lymphocytes and monocytes(%)in P group(0.041[0.024,0.069])was significantly lower than that in NH group(0.270[0.135,0.407])and NA group(0.273[0.150,0.443]),and CD86 mean fluorescence intensity of DNmDCs in P group(1832.0[1484.0,2793.0])was significantly lower than that in NH group(4316.0[2958.0,5169.0])and NA group(3299.0[2534.0,4371.0]),Adjusted P all<0.001.Conclusion Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.
文摘Objective:This systematic review aimed to analyze animal and human trial data to better understand the efficacy of stem cell therapy (SCT) for erectile dysfunction (ED) and the obstacles that may hinder its application in this field.Methods:We searched electronic databases, including PubMed and Scopus, for published studies with the Medical Subject Heading terms of “erectile dysfunction” (AND) “stem cell therapy” (OR) “erectile dysfunction” (AND) “clinical trial of stem cell therapy” (OR) “stem cell therapy” (AND) “sexual dysfunction”. The search was limited to English-language journals and full papers only. The initial search resulted in 450 articles, of which 90 relevant to our aims were included in the analysis.Results:ED is a multifactorial disease. Current treatment options rely on pharmacotherapy as well as surgical options. Patients may have side effects or unsatisfactory results following the use of these treatment options. SCT may restore pathophysiological changes leading to ED rather than treating the symptoms. It has been evaluated in animal models and shown promising results in humans. Results: confirm that SCT does improve erectile function in animals with different types of SC use. In humans, evidence showed promising results, but the trials were heterogeneous and limited mainly by a lack of randomization and the small sample size. Many challenges could limit future research in this field, including ethical dilemmas, regulation, patient recruitment, the cost of therapy, and the lack of a standardized SCT regimen. Repairing and possibly replacing diseased cells, tissue, or organs and eventually retrieving normal function should always be the goals of any therapy, and this can only be guaranteed by SCT.Conclusion:SCT is a potential and successful treatment for ED, particularly in patients who are resistant to the classic therapy. SCT may promote nerve regeneration and vascular cell regeneration, not only symptomatic treatment.
基金National Key Research and Development Program of China(2022YFC2502700)National Natural Science Foundation of China(81873434,82100190).
文摘Advances in chimeric antigen receptor(CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies.However,progress is still hindered as clinical benefit is only available for a fraction of patients.A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice.Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design,guide gene-based T cell modification,and optimize the CAR-T manufacturing conditions,and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes.The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities.In this review,we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies.We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy.Specifically,we provide an overview of single-cell studies focusing on target antigens,CAR-transgene integration,and preclinical research and clinical applications,and then discuss how it will affect the future of CAR-T cell therapy.
基金supported by the National Natural Science Foundation of China,No.31870977(to HYS)the National Key Technologies Research and Development Program of China,No.2017YFA0104700(to FD)+2 种基金2022 Jiangsu Funding Program for Excellent Postdoctoral Talent(to MC)Priority Academic Program Development of Jiangsu Higher Education Institutions[PAPD]the Major Project of Basic Science(Natural Science)Research in Higher Education Institutions of Jiangsu Province,No.22KJA180001(to QRH)。
文摘Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.
文摘Retinitis pigmentosa(RP)is a group of genetic disorders characterized by progressive degeneration of photoreceptors and retinal pigment epithelium(RPE)cells.Its main clinical manifestations include night blindness and progressive loss of peripheral vision,making it a prevalent debilitating eye disease that significantly impacts patients’quality of life.RP exhibits significant phenotypic and genetic heterogeneity.For instance,numerous abnormal genes are implicated in RP,resulting in varying clinical presentations,disease progression rates,and pathological characteristics among different patients.Consequently,gene therapy for RP poses challenges due to these complexities.However,stem cells have garnered considerable attention in the field of RPE therapy since both RPE cells and photoreceptors can be derived from stem cells.In recent years,a large number of animal experiments and clinical trials based on stem cell transplantation attempts,especially cord blood mesenchymal stem cell(MSC)transplantation and bone marrow-derived MSC transplantation,have confirmed that stem cell therapy can effectively and safely improve the outer retinal function of the RP-affected eye.However,stem cell therapy also has certain limitations,such as the fact that RP patients may involve multiple types of retinal cytopathia,which brings great challenges to stem cell transplantation therapy,and further research is needed to solve various problems faced by this approach in the clinic.Through comprehensive analysis of the etiology and histopathological changes associated with RP,this study substantiates the efficacy and safety of stem cell therapy based on rigorous animal experimentation and clinical trials,while also highlighting the existing limitations that warrant further investigation.
基金Supported by São Paulo Research Foundation/FAPESP,No.2020/11564-6 and No.2019/27001-3the National Council for Scientific and Technological Development/CNPq,No.400030/2018-7Network NanoHealth/FAPERJ,No.E-26/10.000981/2019 and No.E-26/010.000210/2019/FAPERJ。
文摘The burgeoning field of bioengineering has witnessed significant strides due to the advent of stem cell models,particularly in their application in advanced therapy medicinal products(ATMPs).In this review,we examine the multifaceted impact of these developments,emphasizing the potential of stem cell models to enhance the sophistication of ATMPs and to offer alternatives to animal testing.Stem cell-derived tissues are particularly promising because they can reshape the preclinical landscape by providing more physiologically relevant and ethically sound platforms for drug screening and disease modelling.We also discuss the critical challenges of reproducibility and accuracy in measurements to ensure the integrity and utility of stem cell models in research and application.Moreover,this review highlights the imperative of stem cell models to align with regulatory standards,ensuring using stem cells in ATMPs translates into safe and effective clinical therapies.With regulatory approval serving as a gateway to clinical adoption,the collaborative efforts between scientists and regulators are vital for the progression of stem cell applications from bench to bedside.We advocate for a balanced approach that nurtures innovation within the framework of rigorous validation and regulatory compliance,ensuring that stem cell-base solutions are maximized to promote public trust and patient health in ATMPs.
文摘Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
基金Supported by National Natural Science Foundation of China,No.82320108022,No.82322076 and No.82104466.
文摘Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and immune escape of CRC.MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells,including T and natural killer cells,as well as by inducing the proliferation of immunosuppressive cells,such as regulatory T cells and tumor-associated macrophages,which,in turn,promote the growth of cancer cells.Thus,MDSCs are key contributors to the emergence of an immunosup-pressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity.In this narrative review,we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment,the current therapeutic approaches and technologies targeting MDSCs,and the therapeutic potential of modulating MDSCs in CRC treatment.This study provides ideas and methods to enhance survival rates in patients with CRC.
文摘BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare,highly invasive malignant neoplasm.There is no universally accepted standard of care because of its rarity and the dearth of prospective research.It is still challenging for some patients to achieve persistent clinical remission or cure,despite the success of allogeneic hematopoietic stem cell transplantation(allo-HSCT),indicating that there is still a significant recurrence rate.We report a case of prevention of BPDCN allograft recurrence by azacitidine maintenance therapy and review the relevant literature.CASE SUMMARY We report a 41-year-old man with BPDCN who was admitted to hospital due to skin sclerosis for>5 mo’duration.BPDCN was diagnosed by combined clinical assessment and laboratory examinations.Following diagnosis,the patients underwent induction consolidation chemotherapy to achieve the first complete remission,followed by bridging allo-HSCT.Post-transplantation,azacitidine(75 mg/m2 for 7 d)was administered as maintenance therapy,with repeat administration every 4–6 wk and appropriate extension of the chemotherapy cycle.After 10 cycles,the patient has been disease free for 26 mo after transplantation.Regular assessments of bone marrow morphology,minimal residual disease,full donor chimerism,Epstein–Barr virus,and cytomegalovirus all yielded normal results with no abnormalities detected.CONCLUSION Azacitidine may be a safe and effective maintenance treatment for BPDCN following transplantation because there were no overt adverse events during the course of treatment.