This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
For autonomous vehicles and driver assist systems,path planning and collision avoidance algorithms benefit from accurate predictions of future location of other vehicles and intent of their drivers.In the literature,t...For autonomous vehicles and driver assist systems,path planning and collision avoidance algorithms benefit from accurate predictions of future location of other vehicles and intent of their drivers.In the literature,the algorithms that provide driver intent belong to two categories:those that use physics based models with some type of filtering,and machine learning based approaches.In this paper we employ barrier functions(BF)to decide driver intent.BFs are typically used to prove safety by establishing forward invariance of an admissible set.Here,we decide if the“target”vehicle is violating one or more possibly fictitious(i.e.,non-physical)barrier constraints determined based on the context provided by the road geometry.The algorithm has a very small computational footprint and better false positive and negative rates than some of the alternatives.The predicted intent is then used by a control barrier function(CBF)based collision avoidance system to prevent unnecessary interventions,for either an autonomous or human-driven vehicle.展开更多
An obstacle avoidance scheme of a two-wheeled mobile robot is shown by selecting an appropriate Lya- punov function. When considering the obstacle, the Lyapunov function may have some local minima. A method which eras...An obstacle avoidance scheme of a two-wheeled mobile robot is shown by selecting an appropriate Lya- punov function. When considering the obstacle, the Lyapunov function may have some local minima. A method which erases the local minima is proposed by using a function which covers the minima with a plane surface. The effectiveness of the proposed method is verified by numerical simulations.展开更多
Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the mod...Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems.展开更多
Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulat...Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulators is vital to the successful applications of dual redundant manipulators. Although methods based on the distance function have been demonstrated simple and efficient, different collision avoidance points can usually produce completely different results and even failure. The paper discussed the choices of collision avoidance points and proposed a novel method for the choosing of those points. The method is testified by simulation results of two redundant planar manipulators.展开更多
Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in whic...Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in which the potential functions are used between agent-agent and between agent-obstacle, while state feedback control is applied for the agent and its goal. This strategy makes the whole potential field simpler and helps avoid some local minima. The stability of this combination of potential functions and state feedback control is proven. Some simulations are presented to show the rationality of this control method.展开更多
This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic env...This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.展开更多
In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents tr...In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.展开更多
针对四旋翼无人机队形保持、编队避障问题,在双向、时不变通信拓扑结构下,基于领航跟随策略,利用安全攸关模型预测控制(safety-critical model predictive control,S-MPC)和一致性理论,设计编队控制器并实现了具有避障能力的队形保持。...针对四旋翼无人机队形保持、编队避障问题,在双向、时不变通信拓扑结构下,基于领航跟随策略,利用安全攸关模型预测控制(safety-critical model predictive control,S-MPC)和一致性理论,设计编队控制器并实现了具有避障能力的队形保持。采用分散式S-MPC算法,每架无人机在满足避碰条件无人机的可行区域内,仅规划自身运动来跟踪编队控制算法指定的轨迹。研究了各解耦后的无人机如何与其他无人机并行求解带有耦合约束的优化问题,从而保证了各无人机独立决策的一致性。同时,所提算法将控制障碍函数(control barrier function,CBF)引入到MPC控制器的约束中,从而保证无人机飞行在远离障碍物的安全集合内,规划出的轨迹更为平滑,减小了系统能耗。最后,通过仿真实验验证了所提方法的有效性。展开更多
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
文摘For autonomous vehicles and driver assist systems,path planning and collision avoidance algorithms benefit from accurate predictions of future location of other vehicles and intent of their drivers.In the literature,the algorithms that provide driver intent belong to two categories:those that use physics based models with some type of filtering,and machine learning based approaches.In this paper we employ barrier functions(BF)to decide driver intent.BFs are typically used to prove safety by establishing forward invariance of an admissible set.Here,we decide if the“target”vehicle is violating one or more possibly fictitious(i.e.,non-physical)barrier constraints determined based on the context provided by the road geometry.The algorithm has a very small computational footprint and better false positive and negative rates than some of the alternatives.The predicted intent is then used by a control barrier function(CBF)based collision avoidance system to prevent unnecessary interventions,for either an autonomous or human-driven vehicle.
文摘An obstacle avoidance scheme of a two-wheeled mobile robot is shown by selecting an appropriate Lya- punov function. When considering the obstacle, the Lyapunov function may have some local minima. A method which erases the local minima is proposed by using a function which covers the minima with a plane surface. The effectiveness of the proposed method is verified by numerical simulations.
基金the support of Centre of Excellence (CoE) in Complex and Nonlinear dynamical system (CNDS), through TEQIP-II, VJTI, Mumbai, India
文摘Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems.
文摘Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulators is vital to the successful applications of dual redundant manipulators. Although methods based on the distance function have been demonstrated simple and efficient, different collision avoidance points can usually produce completely different results and even failure. The paper discussed the choices of collision avoidance points and proposed a novel method for the choosing of those points. The method is testified by simulation results of two redundant planar manipulators.
基金the Jiangsu Province Fundamental Research Plan (Natural Science Foundation) (No.BK2006202).
文摘Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in which the potential functions are used between agent-agent and between agent-obstacle, while state feedback control is applied for the agent and its goal. This strategy makes the whole potential field simpler and helps avoid some local minima. The stability of this combination of potential functions and state feedback control is proven. Some simulations are presented to show the rationality of this control method.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Program of National Natural Science Foundation of China (No. 60934003)Key Project for Natural Science Research of Hebei Education Department(No. ZD200908)
文摘This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project of National Science Foundation of China (No. 60934003)+2 种基金National Nature Science Foundation of China (No. 61074065)Key Project for Natural Science Research of Hebei Education Department, PRC(No. ZD200908)Key Project for Shanghai Committee of Science and Technology (No. 08511501600)
文摘In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61473147)the Funding of Jiangsu Innovation Program for Graduated Education(KYLX16-0376)the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ16-02)