期刊文献+
共找到13,056篇文章
< 1 2 250 >
每页显示 20 50 100
A novel anti-theft alarm system b ased on detection of magnetic field
1
作者 邓丽莉 桑胜波 +4 位作者 张文栋 唐晓亮 李朋伟 胡杰 李刚 《Journal of Measurement Science and Instrumentation》 CAS 2013年第2期175-179,共5页
This paper proposes a novel bidirect i o nal anti-theft alarm scheme through detecting the magnetic field.The theoretical background and analysis of the approach of anti-theft alarm are pre sented.The circuit of burgl... This paper proposes a novel bidirect i o nal anti-theft alarm scheme through detecting the magnetic field.The theoretical background and analysis of the approach of anti-theft alarm are pre sented.The circuit of burglar alarm is designed,fabricated and tested,and C language program is implemented and debugged.Feasibility of the de veloped scheme is proved by the experiments. 展开更多
关键词 anti-theft alarm magnetic field C language
下载PDF
Taidu Electronic Anti-theft Alarm Lock Series
2
《China's Foreign Trade》 1994年第2期34-34,共1页
Produced by the Beijing Taidu Automobile Safety Equipment Manufacture Co. Ltd., the Taidu electronic anti-theft alarm system has a single key system and easy operation. The system has a cover to protect it from accide... Produced by the Beijing Taidu Automobile Safety Equipment Manufacture Co. Ltd., the Taidu electronic anti-theft alarm system has a single key system and easy operation. The system has a cover to protect it from accidental triggering. Indicators display its remote control function, controlling all the locking and unlocking actions for an automobile’s doors within a range of 50 metres. The system has a 展开更多
关键词 WHEN Taidu Electronic anti-theft alarm Lock Series
下载PDF
A Wireless Sensor Network Ad-Hoc Designed as Anti-Theft Alarm System for Photovoltaic Panels 被引量:3
3
作者 Silvano Bertoldo Oscar Rorato +1 位作者 Claudio Lucianaz Marco Allegretti 《Wireless Sensor Network》 2012年第4期107-112,共6页
Photovoltaic (PV) systems have attracted increasing attention in last years as well as Wireless Sensor Networks (WSNs), which have been used in many application fields. In PV plants, especially in ground installations... Photovoltaic (PV) systems have attracted increasing attention in last years as well as Wireless Sensor Networks (WSNs), which have been used in many application fields. In PV plants, especially in ground installations, a lot of thefts and damages occur due to the still high cost of the modules. A new experimental WSN ad-hoc has been designed to be an anti-theft alarm system. Each node of the network is directly installed under each PV string and it is equipped with an accelerometer sensor capable to detect a minimum displacement of the panel from its steady position. The WSN presents a star topology: a master node cyclically interrogates the slave nodes through RF link. It collects all the nodes responses and communicates though a RS-232 interface with a control PC checking the network status. When a slave node detects an alarm, continuous messages are sent to the control PC which turns on all the alarm signaling systems. The control PC is equipped with an open source operative system and software and provides for SMS, e-mail and sound-light signaling in case of alarm. It also communicates with a remote server where all the WSN information is stored. A first low cost experimental WSN has been already installed and it is working properly. 展开更多
关键词 WSN alarm SYSTEM Photovoltaic SYSTEM Electronic BOARD AD-HOC Designed BOARD Low Cost AD-HOC Protocol
下载PDF
Sounding the alarm:Functionally referential signaling in Azure-winged Magpie
4
作者 Xingyi Jiang Yanyun Zhang 《Avian Research》 SCIE CSCD 2024年第1期35-41,共7页
Functionally referential signals are a complex form of communication that conveys information about the external environment.Such signals have been found in a range of mammal and bird species and have helped us unders... Functionally referential signals are a complex form of communication that conveys information about the external environment.Such signals have been found in a range of mammal and bird species and have helped us understand the complexities of animal communication.Corvids are well known for their extraordinary cognitive abilities,but relatively little attention has been paid to their vocal function.Here,we investigated the functionally referential signals of a cooperatively breeding corvid species,Azure-winged Magpie(Cyanopica cyanus).Through field observations,we suggest that Azure-winged Magpie uses referential alarm calls to distinguish two types of threats:’rasp’ calls for terrestrial threats and ’chatter’ calls for aerial threats.A playback experiment revealed that Azure-winged Magpies responded to the two call types with qualitatively different behaviors.They sought cover by flying into the bushes in response to the ’chatter’ calls,and flew to or stayed at higher positions in response to ’rasp’ calls,displaying a shorter response time to ’chatter’ calls.Significant differences in acoustic structure were found between the two types of calls.Given the extensive cognitive abilities of corvids and the fact that referential signals were once thought to be unique to primates,these findings are important for expanding our understanding of social communication and language evolution. 展开更多
关键词 alarm call Animal communication Azure-winged Magpie Referential signal
下载PDF
Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm
5
作者 Jianye Li Hao Wang +8 位作者 Yibing Luo Zijing Zhou He Zhang Huizhi Chen Kai Tao Chuan Liu Lingxing Zeng Fengwei Huo Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期1-22,共22页
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ... Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios. 展开更多
关键词 Stretchable hydrogel sensors Multimodal e-skin Artificial intelligence Post-earthquake rescue Wireless toxic gas alarm
下载PDF
A lightweight false alarm suppression method in heterogeneous change detection
6
作者 XU Cong HE Zishu LIU Haicheng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期899-905,共7页
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light... Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms. 展开更多
关键词 convolutional neural network(CNN) graph convolu-tional network(GCN) heterogeneous change detection LIGHTWEIGHT false alarm suppression
下载PDF
Pattern Matching of Industrial Alarm Floods Using Word Embedding and Dynamic Time Warping
7
作者 Wenkai Hu Xiangxiang Zhang +2 位作者 Jiandong Wang Guang Yang Yuxin Cai 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1096-1098,共3页
Dear Editor,This letter proposes a new pattern matching method based on word embedding and dynamic time warping(DTW)to identify groups of similar alarm floods.First,alarm messages are transformed into numeric values t... Dear Editor,This letter proposes a new pattern matching method based on word embedding and dynamic time warping(DTW)to identify groups of similar alarm floods.First,alarm messages are transformed into numeric values that represent alarms and also reflect the relationships between alarm occurrences.Then,similarities between numerically encoded alarm flood sequences are calculated by DTW and groups of similar floods are identified via clustering.The effectiveness of the proposed method is demonstrated by a case study with alarm&event data obtained from a public industrial simulation model. 展开更多
关键词 WORD alarm DTW
下载PDF
Enhancing Feature Discretization in Alarm and Fire Detection Systems Using Probabilistic Inference Models
8
作者 Joe Essien 《Journal of Computer and Communications》 2023年第7期140-155,共16页
Sensors for fire alarms require a high level of predictive variables to ensure accurate detection, injury prevention, and loss prevention. Bayesian networks can aid in enhancing early fire detection capabilities and r... Sensors for fire alarms require a high level of predictive variables to ensure accurate detection, injury prevention, and loss prevention. Bayesian networks can aid in enhancing early fire detection capabilities and reducing the frequency of erroneous fire alerts, thereby enhancing the effectiveness of numerous safety monitoring systems. This research explores the development of optimized probabilistic graphic models for the discretization thresholds of alarm system predictor variables. The study presents a statistical model framework that increases the efficacy of fire detection by predicting the discretization thresholds of alarm system predictor variable fluctuations used to detect the onset of fire. The work applies the Bayesian networks and probabilistic visual models to reveal the specific characteristics required to cope with fire detection strategies and patterns. The adopted methodology utilizes a combination of prior knowledge and statistical data to draw conclusions from observations. Utilizing domain knowledge to compute conditional dependencies between network variables enabled predictions to be made through the application of specialized analytical and simulation techniques. 展开更多
关键词 Neural Network DISCRETIZATION alarm Systems Graphical Models Machine Learning
下载PDF
Machine Learning-Based Alarms Classification and Correlation in an SDH/WDM Optical Network to Improve Network Maintenance
9
作者 Deussom Djomadji Eric Michel Takembo Ntahkie Clovis +2 位作者 Tchapga Tchito Christian Arabo Mamadou Michael Ekonde Sone 《Journal of Computer and Communications》 2023年第2期122-141,共20页
The evolution of telecommunications has allowed the development of broadband services based mainly on fiber optic backbone networks. The operation and maintenance of these optical networks is made possible by using su... The evolution of telecommunications has allowed the development of broadband services based mainly on fiber optic backbone networks. The operation and maintenance of these optical networks is made possible by using supervision platforms that generate alarms that can be archived in the form of log files. But analyzing the alarms in the log files is a laborious and difficult task for the engineers who need a degree of expertise. Identifying failures and their root cause can be time consuming and impact the quality of service, network availability and service level agreements signed between the operator and its customers. Therefore, it is more than important to study the different possibilities of alarms classification and to use machine learning algorithms for alarms correlation in order to quickly determine the root causes of problems faster. We conducted a research case study on one of the operators in Cameroon who held an optical backbone based on SDH and WDM technologies with data collected from 2016-03-28 to “2022-09-01” with 7201 rows and 18. In this paper, we will classify alarms according to different criteria and use 02 unsupervised learning algorithms namely the K-Means algorithm and the DBSCAN to establish correlations between alarms in order to identify root causes of problems and reduce the time to troubleshoot. To achieve this objective, log files were exploited in order to obtain the root causes of the alarms, and then K-Means algorithm and the DBSCAN were used firstly to evaluate their performance and their capability to identify the root cause of alarms in optical network. 展开更多
关键词 Optical Network alarmS Log Files Root Cause Analysis Machine Learning
下载PDF
SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management
10
作者 Ana María Peco Chacón Isaac Segovia Ramírez Fausto Pedro García Márquez 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2595-2608,共14页
Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working co... Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification. 展开更多
关键词 Machine learning classification support vector machine false alarm wind turbine cross-validation
下载PDF
Glass-compatible and self-powered temperature alarm system by temperature-responsive organic manganese halides via backward energy transfer process
11
作者 Pengfei Xia Fan Liu +4 位作者 Yuru Duan Xuefang Hu Changgui Lu Shuhong Xu Chunlei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期188-194,I0006,共8页
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h... A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day. 展开更多
关键词 Luminescent solar concentrators Organic manganese halides Perovskite-polymer compositefilms Self-powered temperature alarm system Backward energy transfer process
下载PDF
Predictive value of alarm features in diagnosing upper gastrointestinal malignancies among dyspeptic patients:A cross-sectional study in Ethiopia
12
作者 Wudassie Melak Wassihun Asmare +1 位作者 Abate Bane Mengistu Erkie 《Gastroenterology & Hepatology Research》 2023年第3期29-39,共11页
Objective:The study aimed to determine the overall predictive value of alarm features in diagnosing upper Gastrointestinal(GI)malignancies and significant endoscopic findings among patients undergoing elective Esophag... Objective:The study aimed to determine the overall predictive value of alarm features in diagnosing upper Gastrointestinal(GI)malignancies and significant endoscopic findings among patients undergoing elective Esophagogastroduodenoscopy(EGD)at Tikur Anbessa Special Hospital(TASH)and Adera Medical Centre(AMC).Methods:It was an institution-based cross-sectional study conducted on patients undergoing elective endoscopy for an upper GI complaint from July to September 2022.Data was collected from patient charts,and biopsies were taken for histologic confirmation.The study assessed the association of alarm symptoms and signs with significant upper gastrointestinal(UGI)endoscopic findings and malignancies.Results:142 patients were selected,with an average age of 48.35 and 52.1% being male.Epigastric pain was the most common reason for an endoscopy.62% of patients had at least one alarm feature,the most common being unexplained weight loss and UGI bleeding.The study found a strong association between the presence of alarm features,significant endoscopic findings,and UGI malignancies.The pooled sensitivity and specificity of any alarm feature for any significant finding were 79% and 64.9%,respectively,and for malignancy,100% and 39.7%,respectively.The presence of the alarm feature was associated with an increase of 6.801 in the odds of developing SEF and an increase of 4.199 in the odds of developing malignancy.Conclusions:UGI alarm symptoms and signs like an abdominal mass,persistent vomiting,dysphagia,and UGI bleeding are predictive of significant endoscopic findings and malignancies.Hence,EGD should be done and suspicious lesions should be biopsied early,regardless of gender,age,or duration of symptoms. 展开更多
关键词 alarm symptoms DYSPEPSIA ENDOSCOPY gastric cancer PUD esophageal cancer
下载PDF
基于STM32单片机的家庭安防系统设计 被引量:1
13
作者 王克勇 杨清志 《河北北方学院学报(自然科学版)》 2024年第3期22-27,共6页
为了更好地对居家环境进行安全监测与防范,以STM32F103单片机为处理核心设计了一套家庭安防系统。系统采用各种传感器进行环境监测,并将监测信息传至单片机,进行存储、显示与报警等处理,同时通过ESP8266无线传输模块将监测信息传至互联... 为了更好地对居家环境进行安全监测与防范,以STM32F103单片机为处理核心设计了一套家庭安防系统。系统采用各种传感器进行环境监测,并将监测信息传至单片机,进行存储、显示与报警等处理,同时通过ESP8266无线传输模块将监测信息传至互联网,实现远程监测与报警。试验结果表明,传感器与报警系统工作正常,数据传输准确,验证了系统设计的可靠性。 展开更多
关键词 传感器 STM32F103 ESP8266 监测 报警
下载PDF
4种血培养瓶4种临床常用抗菌药物吸附能力分析
14
作者 杨会林 陈娟 +3 位作者 闫津津 欧嘉文 文明明 周丽娜 《检验医学》 CAS 2024年第6期578-582,共5页
目的分析4种血培养瓶对亚胺培南、哌拉西林-他唑巴坦、万古霉素和卡泊芬净4种临床常用抗菌药物的吸附能力,为提高血培养病原体检出率提供参考。方法选择亚胺培南、哌拉西林-他唑巴坦、万古霉素和卡泊芬净敏感标准菌株进行配对,将抗菌药... 目的分析4种血培养瓶对亚胺培南、哌拉西林-他唑巴坦、万古霉素和卡泊芬净4种临床常用抗菌药物的吸附能力,为提高血培养病原体检出率提供参考。方法选择亚胺培南、哌拉西林-他唑巴坦、万古霉素和卡泊芬净敏感标准菌株进行配对,将抗菌药物和配对菌株分别加入4种临床常用的血培养瓶(FA plus、FNplus、Aerobic、Anaerobic)进行培养,根据培养瓶报阳情况和阳性报警时长,评估不同血培养瓶对4种抗菌药物的吸附能力。结果对照瓶(无抗菌药物吸附措施)培养5 d均未报阳。FA plus、FN plus、Aerobic、Anaerobic阳性报警率分别为75.0%(15/20)、100.0%(10/10)、70.0%(14/20)、0.0%(0/10)。亚胺培南/大肠埃希菌组,FN plus均能报阳(5/5),阳性报警时长为(12.4±0.3)h,FA plus、Aerobic和Anaerobic5d均未报阳;哌拉西林-他唑巴坦/铜绿假单胞菌组,FAplus和Aerobic能报阳(5/5),阳性报警时长分别为(16.2±0.3)和(18.1±0.4)h,2种血培养瓶阳性报警时长差异有统计学意义(P<0.05);万古霉素/金黄色葡萄球菌组,FA plus、FN plus和Aerobic能报阳,阳性报警时长分别为(16.7±0.4)、(24.1±0.6)和(31.3±3.9)h,3种血培养瓶阳性报警时长差异有统计学意义(P<0.05),Anaerobic培养5 d未报阳。卡泊芬净/白念珠菌组,FA plus和Aerobic能报阳,阳性报警时长分别为(47.1±3.3)和(42.9±2.0)h,2种血培养瓶阳性报警时长差异有统计学意义(P<0.05)。结论FN plus具有吸附亚胺培南、万古霉素的能力,FA plus和Aerobic具有吸附万古霉素、哌拉西林-他唑巴坦和卡泊芬净的能力;对采集血液样本前使用了抗菌药物的患者,不建议使用无吸附抗菌药物措施的血培养瓶,应根据临床抗菌药物使用习惯选择合适的培养瓶。 展开更多
关键词 血培养 抗菌药物吸附 病原菌 阳性报警时长
下载PDF
智能报警气管导管防滑脱装置的设计及应用
15
作者 王宜庭 杨细虎 邵振莉 《护理研究》 北大核心 2024年第6期1117-1120,共4页
目的:设计智能报警气管导管防滑脱装置,并评价其临床应用效果。方法:选取2022年4月-5月镇江市某三级甲等医院恢复室收治的172例全身麻醉手术病人作为研究对象,将2022年4月的86例全身麻醉气管插管病人作为对照组,将2022年5月的86例全身... 目的:设计智能报警气管导管防滑脱装置,并评价其临床应用效果。方法:选取2022年4月-5月镇江市某三级甲等医院恢复室收治的172例全身麻醉手术病人作为研究对象,将2022年4月的86例全身麻醉气管插管病人作为对照组,将2022年5月的86例全身麻醉气管插管病人作为观察组。对照组按照常规的气管插管方法协助置管及护理,观察组应用智能报警气管导管防滑脱装置协助气管导管固定。对两组病人气管导管移位或脱出情况、病人面部皮肤情况、病人咽喉痛发生情况及护士满意度进行比较。结果:观察组病人气管导管移位或脱出风险小于对照组,面部皮肤并发症发生率、咽喉痛程度低于对照组,护士满意度高于对照组,差异均有统计学意义(均P<0.05)。结论:使用智能报警气管导管防滑脱装置可减少病人气管导管移位或脱出,降低病人皮肤并发症发生率、咽喉痛程度,提高护士满意度。 展开更多
关键词 智能报警 气管插管 非计划拔管 机械通气 护理
下载PDF
基于模式物理量参数的云南雷暴大风概率预报技术研究
16
作者 陈小华 李华宏 +2 位作者 何钰 马文倩 李耀孙 《高原山地气象研究》 2024年第2期112-119,共8页
利用2019—2021年云南125个国家站大风数据和云南省地闪资料,统计云南雷暴大风个例,并挑选对雷暴大风有重要意义的物理量参数,结合NCEP再分析资料确定云南雷暴大风个例的物理量阈值,再基于ECMWF数值模式预报产品及确定的阈值,采用二分... 利用2019—2021年云南125个国家站大风数据和云南省地闪资料,统计云南雷暴大风个例,并挑选对雷暴大风有重要意义的物理量参数,结合NCEP再分析资料确定云南雷暴大风个例的物理量阈值,再基于ECMWF数值模式预报产品及确定的阈值,采用二分法进行云南雷暴大风概率预报。结果表明:在云南三次雷暴大风过程预报检验中,8月4日云南中部及东北部雷暴大风均命中,但在云南西部及西南部出现大范围的虚警,导致此次过程虚警率较高和临界成功指数较低;8月5日云南中部、东北及西北部雷暴大风预报正确,且云南西部及南部虚警范围小,虚警率较8月4日明显降低;7月7日云南自东北向西南出现大范围的雷暴大风天气过程,雷暴大风预报落区与实况基本吻合,呈现命中率高、虚警率较低的特征;三次过程命中率、临界成功指数、虚警率平均为0.873、0.203、0.789。 展开更多
关键词 雷暴大风 概率预报 命中率 虚警率
下载PDF
基于机器学习对呼吸机报警分析
17
作者 刘强 郭瑞 +1 位作者 王勤 孙凯 《中国医疗设备》 2024年第3期53-57,79,共6页
目的 探讨应用机器学习方法对呼吸机在临床使用中的通气类报警进行研究,获得影响报警的重要参数及报警预测模型,识别无效报警并给予临床提示,使临床得以高效应对呼吸机报警,避免造成报警疲劳等消极影响。方法 建立符合标准数据流程的呼... 目的 探讨应用机器学习方法对呼吸机在临床使用中的通气类报警进行研究,获得影响报警的重要参数及报警预测模型,识别无效报警并给予临床提示,使临床得以高效应对呼吸机报警,避免造成报警疲劳等消极影响。方法 建立符合标准数据流程的呼吸机数据管理平台,根据单中心的呼吸机报警信息分析特征值,得出重要参数排序;利用超参数调优建模预测报警的真假;用混淆矩阵、受试者工作特征(Receiver Operating Characteristic,ROC)对机器学习模型进行多项指标验证。结果 对测试集5936次通气类报警进行评估,得出无效报警率为88%(召回率为0.88),模型准确度为0.94,精准度为0.78,ROC曲线下面积为0.92,F1得分为0.82。结论 采用机器学习便于临床单中心数据建模,能够及时分析获得呼吸机真实警报的重要参数及报警预测;通过呼吸机数据管理平台可有效提示临床无效报警,从而减少医护人员的压力,提高医疗质量。 展开更多
关键词 呼吸机 数据接口 报警项目 机器学习 重要特征变量
下载PDF
基于杂波拖尾分布的雷达无人机检测性能分析
18
作者 杨勇 王雪松 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期113-120,共8页
固定翼无人机(unmanned aerial vehicle,UAV)给雷达低空监视提出了严峻挑战。分析雷达对固定翼UAV的检测性能,可为雷达UAV检测能力评估和技术升级提供重要参考。本文结合雷达探测低空固定翼UAV外场实测数据,首先分析了低空固定翼UAV雷... 固定翼无人机(unmanned aerial vehicle,UAV)给雷达低空监视提出了严峻挑战。分析雷达对固定翼UAV的检测性能,可为雷达UAV检测能力评估和技术升级提供重要参考。本文结合雷达探测低空固定翼UAV外场实测数据,首先分析了低空固定翼UAV雷达接收信号幅度统计分布,采用多项式对杂波拖尾导致的虚警概率进行拟合建模;然后,根据虚警概率分布得到雷达检测门限;进而根据UAV回波+杂波幅度分布理论推导得到雷达检测概率;最后,将理论分析性能与传统性能分析结果、雷达实际检测性能进行对比。结果表明,采用多项式对杂波拖尾导致的虚警概率进行单独建模,由此获得的雷达检测门限精度更高,从而使雷达UAV检测性能分析结果较传统性能分析结果更准确。 展开更多
关键词 雷达检测 杂波拖尾 无人机 性能分析 虚警概率
下载PDF
一起带有程序误判的液压系统故障分析
19
作者 朱培显 丁正 张元 《液压气动与密封》 2024年第1期112-114,共3页
某热轧板生产线卸卷车的升降由液压缸驱动,升降高度的检测采用了间接测量方法,通过流量计先测量进出油缸无杆腔的油量,再由PLC进行计算得到位置数据。相对于常规采用的位移传感器直接测量方法,该方式很好地避免了现场高温和水淋对检测... 某热轧板生产线卸卷车的升降由液压缸驱动,升降高度的检测采用了间接测量方法,通过流量计先测量进出油缸无杆腔的油量,再由PLC进行计算得到位置数据。相对于常规采用的位移传感器直接测量方法,该方式很好地避免了现场高温和水淋对检测元件的损害,提高了元件的可靠度。经过对一起故障的排查、分析、处理,发现了该系统存在的不完善地方,提出了解决办法。 展开更多
关键词 卸卷车 液压缸 内泄 报警
下载PDF
工程训练模式下的火灾自动报警控制系统设计实践与探索
20
作者 张存宏 丁然 邱舒霞 《佳木斯大学学报(自然科学版)》 CAS 2024年第1期136-139,共4页
以工程训练中心的基础实践课程为主线,探索OBE模式下的火灾报警控制系统设计,即在基础实践技能篇的基础上,提出一种能够体现学生对电子元件、工具使用具有导向价值的实践项目,同时保持一定的可塑性和拓展性,设计一种基于AT89C51单片机... 以工程训练中心的基础实践课程为主线,探索OBE模式下的火灾报警控制系统设计,即在基础实践技能篇的基础上,提出一种能够体现学生对电子元件、工具使用具有导向价值的实践项目,同时保持一定的可塑性和拓展性,设计一种基于AT89C51单片机的新型火灾自动报警装置,仿真实现了声光电一体化报警、烟雾浓度测量和温度测量显示等检测功能,进而培养学生的创新实践能力。 展开更多
关键词 工程训练 电子技术实践 火灾自动报警
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部