Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein I...Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with ...Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages,but it is often ineffective and suffers from problems such as multidrug resistance,rapid drug clearance,nonspecific targeting,high side effects,and low drug accumulation in tumor cells.In response to these limitations,recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC.This review focuses on recent advances in nanoparticle-based targeted drug delivery systems,with special attention to various receptors overexpressed on HCC cells.These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC.We comprehensively summarize the current understanding of these receptors,their role in nanoparticle targeting,and the impact of such targeted therapies on HCC.By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies,more effective and precise treatment of HCC can be achieved.展开更多
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig...Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.展开更多
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Re...Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.展开更多
Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel ne...Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms.展开更多
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of canc...BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.展开更多
Background:According to traditional Chinese medicine(TCM),drugs supplementing the vital energy,Qi,can eliminate tumors by restoring host immunity.The objective of this study is to investigate the underlying immune mec...Background:According to traditional Chinese medicine(TCM),drugs supplementing the vital energy,Qi,can eliminate tumors by restoring host immunity.The objective of this study is to investigate the underlying immune mechanisms of anti-tumor activity associated with Qi-supplementing herbs,specifically the paired use of Huangqi and Danggui.Methods:Analysis of compatibility regularity was conducted to screen the combination of Qi-supplementing TCMs.Using the MTT assay and a transplanted tumor mice model,the anti-tumor effects of combination TCMs were investigated in vitro and in vivo.High content analysis and flow cytometry were then used to evaluate cellular immunity,followed by network pharmacology and molecular docking to dissect the significant active compounds and potential mechanisms.Finally,the anti-tumor activity and the mechanism of the active ingredients were verified by molecular experiments.Results:There is an optimal combination of Huangqi and Danggui that,administered as an aqueous extract,can activate immunity to suppress tumor and is more effective than each drug on its own in vitro and in vivo.Based on network pharmacology analysis,PIK3R1 is the core target for the anti-tumor immunity activity of combined Huangqi and Danggui.Molecular docking analysis shows 6 components of the combined Danggui and Huangqi extract(quercetin,jaranol,isorhamnetin,kaempferol,calycosin,and suchilactone)that bind to PIK3R1.Jaranol is the most important component against breast cancer.The suchilactone/jaranol combination and,especially,the suchilactone/kaempferol combination are key for immunity enhancement and the anti-tumor effects of the extract.Conclusions:The combination of Huangqi and Danggui can activate immunity to suppress breast cancer and is more effective than the individual drugs alone.展开更多
This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image...This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.展开更多
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality.Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenes...Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality.Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic,collectively known as ribosomopathy genes.Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer.Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development.The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established.This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile,to excavate the potential role of these genes,which have not or rarely been reported in cancer,in the disease development across cancers.We plan to establish a theoretical framework between the ribosomopathy gene and cancer development,to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.展开更多
Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the ima...Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes.展开更多
Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a ca...Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a cancer-associated fibroblasts(CAFs)triggered structure-transformable nano-assembly(HSD-P@V),which can directionally deliver valsartan(Val,CAFs regulator)and doxorubicin(DOX,senescence inducer)to the specific targets.In detail,DOX is conjugated with hyaluronic acid(HA)via diselenide bonds(Se-Se)to form HSD micelles,while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer,which is coated on Val nanocrystals(VNs)surface for improving the stability and achieving responsive release.Once arriving at tumor microenvironment and touching CAFs,HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment.VNs can degrade the extracellularmatrix,leading to the enhanced penetration of HSD.HSD targets tumor cells,releases DOX to induce senescence,and recruits effector immune cells.Furthermore,senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy.In vitro and in vivo results show that the nanoassembly remarkably inhibits tumor growth as well as lungmetastasis,and extends tumorbearing mice survival.This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.展开更多
A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs gener...A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.展开更多
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted...In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).展开更多
Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightwe...Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively.展开更多
Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the pr...Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the prodrug of epigallocatechin gallate(ProEGCG)exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate(EGCG).However,their direct binding targets and underlying mechanisms for the differential effects remain unknown.In this study,we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis.Additionally,1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin(MTDH)and PX domain containing serine/threonine kinase-like(PXK)as novel binding targets of EGCG and ProEGCG,respectively.Computational simulation and BioLayer interferometry were used to confirm their binding affinity.Our results showed that MTDH-EGCG inhibited protein kinase B(Akt)-mediated angiogenesis,while PXK-ProEGCG inhibited epidermal growth factor(EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor(HIF-1a)/vascular endothelial growth factor(VEGF)pathway.In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways.Moreover,our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.展开更多
Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extra...Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins,peptides,nucleotides,and lipids secreted from their cellular sources.Increasing evidence shows that exosomes participate in a communication network in the nervous system,in which astrocyte-derived exosomes play important roles.In this review,we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system.We also discuss the potential research directions of the exosome-based communication network in the nervous system.The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain.New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.展开更多
In this paper,the pharmacological effects and molecular mechanisms of sarsasapogenin,such as anti-oxidant,anti-inflammatory and anti-diabetic effects,are reviewed in order to provide a theoretical basis for the subseq...In this paper,the pharmacological effects and molecular mechanisms of sarsasapogenin,such as anti-oxidant,anti-inflammatory and anti-diabetic effects,are reviewed in order to provide a theoretical basis for the subsequent development and clinical application of sarsasapogenin.展开更多
BACKGROUND Modern pharmacological studies have confirmed that plant-derived compounds from Puerariae flos(PF)has significant biological activities against liver damage,tumors and inflammation.Kakkatin is an isoflavone...BACKGROUND Modern pharmacological studies have confirmed that plant-derived compounds from Puerariae flos(PF)has significant biological activities against liver damage,tumors and inflammation.Kakkatin is an isoflavone polyphenolic compound isolated from PF flower.However,the effect of kakkatin and its derivatives on anti-tumor has not been well explored.AIM To design and synthesize a kakkatin derivative[6-(hept-6-yn-1-yloxy)-3-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one(HK)]to explore its anti-tumor biological activity.METHODS Hept-6-yn-1-yl ethanesulfonate was introduced to replace hydrogen at the hydroxyl position of kakkatin phenol,and the derivative of kakkatin was prepared;the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to detect cell viability,a clone formation assay was adopted to detect cell proliferation,apoptosis,necrosis,and cell cycles were analyzed by Annexin V/propidium iodide staining and flow cytometry.Cell migration and invasion ability were evaluated by cell scratch assay and transwell assay.The potential mechanism of HK on hepatocellular carcinoma(HCC)SMMC-7721 cells was explored through network pharmacology and molecular docking,and finally real-time PCR assays was used to verify the potential targets and evaluate the biological activity of HK.RESULTS Compared with kakkatin,the modified HK did not significantly increase the inhibitory activity of gastric cancer MGC803 cells,but the inhibitory activity of HCC SMMC-7721 cells was increased by about 30 times,with an IC50 value of 2.5μM,and the tumor inhibition effect was better than cisplatin,which could significantly inhibit the cloning,invasion and metastasis of HCC SMMC-7721 cells,and induce apoptosis and G2/M cycle arrest.Its mechanism of action is mainly related to the upregulation of PDE3B and NFKB1 target proteins in the cAMP pathway.CONCLUSION HK have a significant inhibitory effect on HCC SMMC-7721 cells,and the targets of their action may be PDE3B and NFKB1 proteins in the cAMP pathway,making it a good lead drug for the treatment of HCC.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)+2 种基金Natural Science Foundation of Hainan Province(No.822RC703 for J.L.)Foundation of Hainan Educational Committee(No.Hnky2022-27 for J.L.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
基金Supported by Xi'an Jiaotong University Medical"Basic-Clinical"Integration Innovation Project,No.YXJLRH2022067Shaanxi Postdoctoral Research Program“Orlistat-loaded Nanoparticles as A Targeted Therapeutical Strategy for The Enhanced Treatment of Liver Cancer”,No.2023BSHYDZZ09.
文摘Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages,but it is often ineffective and suffers from problems such as multidrug resistance,rapid drug clearance,nonspecific targeting,high side effects,and low drug accumulation in tumor cells.In response to these limitations,recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC.This review focuses on recent advances in nanoparticle-based targeted drug delivery systems,with special attention to various receptors overexpressed on HCC cells.These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC.We comprehensively summarize the current understanding of these receptors,their role in nanoparticle targeting,and the impact of such targeted therapies on HCC.By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies,more effective and precise treatment of HCC can be achieved.
基金National Natural Science Foundation of China(No.42271416)Guangxi Science and Technology Major Project(No.AA22068072)Shennongjia National Park Resources Comprehensive Investigation Research Project(No.SNJNP2023015).
文摘Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.
基金supported by the National Natural Science Foundation of China,Nos.82071382(to MZ),81601306(to HS)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to MZ)+5 种基金Jiangsu 333 High-Level Talent Training Project(2022)(to HS)The Jiangsu Maternal and Child Health Research Key Project,No.F202013(to HS)Jiangsu Talent Youth Medical Program,No.QNRC2016245(to HS)Shanghai Key Lab of Forensic Medicine,No.KF2102(to MZ)Suzhou Science and Technology Development Project,No.SYS2020089(to MZ)The Fifth Batch of Gusu District Health Talent Training Project,No.GSWS2019060(to HS)。
文摘Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.
基金supported by National Natural Science Foundation of China(Grant No.61871209,No.62272182 and No.61901210)Shenzhen Science and Technology Program under Grant JCYJ20220530161004009+2 种基金Natural Science Foundation of Hubei Province(Grant No.2022CF011)Wuhan Business University Doctoral Fundamental Research Funds(Grant No.2021KB005)in part by Artificial Intelligence and Intelligent Transportation Joint Technical Center of HUST and Hubei Chutian Intelligent Transportation Co.,LTD under project Intelligent Tunnel Integrated Monitoring and Management System.
文摘Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms.
基金Supported by National Natural Science Foundation of China,No.82360329Inner Mongolia Medical University General Project,No.YKD2023MS047Inner Mongolia Health Commission Science and Technology Plan Project,No.202201275.
文摘BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.
基金Natural Science Foundation of Shanxi Province for Youths,Grant/Award Number:20210302123310 and 20210302124668Science and technology innovation ability cultivation program project of Shanxi University of Chinese Medicine,Grant/Award Number:2022PY-TH-17The immune regulation Chinese medicine research and development innovation team project,Grant/Award Number:2022TD1017。
文摘Background:According to traditional Chinese medicine(TCM),drugs supplementing the vital energy,Qi,can eliminate tumors by restoring host immunity.The objective of this study is to investigate the underlying immune mechanisms of anti-tumor activity associated with Qi-supplementing herbs,specifically the paired use of Huangqi and Danggui.Methods:Analysis of compatibility regularity was conducted to screen the combination of Qi-supplementing TCMs.Using the MTT assay and a transplanted tumor mice model,the anti-tumor effects of combination TCMs were investigated in vitro and in vivo.High content analysis and flow cytometry were then used to evaluate cellular immunity,followed by network pharmacology and molecular docking to dissect the significant active compounds and potential mechanisms.Finally,the anti-tumor activity and the mechanism of the active ingredients were verified by molecular experiments.Results:There is an optimal combination of Huangqi and Danggui that,administered as an aqueous extract,can activate immunity to suppress tumor and is more effective than each drug on its own in vitro and in vivo.Based on network pharmacology analysis,PIK3R1 is the core target for the anti-tumor immunity activity of combined Huangqi and Danggui.Molecular docking analysis shows 6 components of the combined Danggui and Huangqi extract(quercetin,jaranol,isorhamnetin,kaempferol,calycosin,and suchilactone)that bind to PIK3R1.Jaranol is the most important component against breast cancer.The suchilactone/jaranol combination and,especially,the suchilactone/kaempferol combination are key for immunity enhancement and the anti-tumor effects of the extract.Conclusions:The combination of Huangqi and Danggui can activate immunity to suppress breast cancer and is more effective than the individual drugs alone.
文摘This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.
基金the National Natural Science Foundation of China(Grant No.:82360542)Jiangxi Provincial Natural Science Foundation,China(Grant Nos.:20224BAB214030 and 20224BAB216072)+2 种基金Doctoral Startup Fund of Gannan Medical University,China(Grant Nos.:QD202136 and QD202132)Science and Technology Planning Projects of Fuzhou,China(Grant No.:2021FZR0101)the Natural Science Foundation of Fujian Province,China(Grant No.:2022YZ0104).
文摘Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality.Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic,collectively known as ribosomopathy genes.Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer.Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development.The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established.This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile,to excavate the potential role of these genes,which have not or rarely been reported in cancer,in the disease development across cancers.We plan to establish a theoretical framework between the ribosomopathy gene and cancer development,to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
基金This work was jointly supported by the Special Fund for Transformation and Upgrade of Jiangsu Industry and Information Industry-Key Core Technologies(Equipment)Key Industrialization Projects in 2022(No.CMHI-2022-RDG-004):“Key Technology Research for Development of Intelligent Wind Power Operation and Maintenance Mothership in Deep Sea”.
文摘Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes.
基金was supported by National Natural Science Foundation of China(81972893,82172719)Natural Science Foundation of Henan(212300410071)Training program for young key teachers in Henan Province(2020GGJS019).
文摘Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a cancer-associated fibroblasts(CAFs)triggered structure-transformable nano-assembly(HSD-P@V),which can directionally deliver valsartan(Val,CAFs regulator)and doxorubicin(DOX,senescence inducer)to the specific targets.In detail,DOX is conjugated with hyaluronic acid(HA)via diselenide bonds(Se-Se)to form HSD micelles,while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer,which is coated on Val nanocrystals(VNs)surface for improving the stability and achieving responsive release.Once arriving at tumor microenvironment and touching CAFs,HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment.VNs can degrade the extracellularmatrix,leading to the enhanced penetration of HSD.HSD targets tumor cells,releases DOX to induce senescence,and recruits effector immune cells.Furthermore,senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy.In vitro and in vivo results show that the nanoassembly remarkably inhibits tumor growth as well as lungmetastasis,and extends tumorbearing mice survival.This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25020205)the program of Science and Technology on Plasma Physics Laboratory,China Academy of Engineering Physics(Grant No.6142A04220108)。
文摘A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.
基金supported by the National Natural Science Foundation of China (No.U1833203),the National Natural Science Foundation of China (No.62301036)the Aviation Science Foundation (No.2020Z019055001)China Postdoctoral Science Foundation Funded Project (No.2022M720446)。
文摘In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).
基金Supported by the fund of the Henan Province Science and Technology Research Project(No.242102210213).
文摘Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively.
基金supported by the GRF RGC&CRF,Hong Kong(Grant Nos.:475012 and C5045-20 EF)HMRF,Hong Kong(Grant No.:03141386)+3 种基金ITF,Hong Kong(Grant No.:ITS/209/12)UGC Direct Grant 2011,2012,2021.032HKOG Trust Fund 2011,2014,2019the National Natural Science Foundation of China(Grant Nos.:81974225 and 82201823)。
文摘Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the prodrug of epigallocatechin gallate(ProEGCG)exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate(EGCG).However,their direct binding targets and underlying mechanisms for the differential effects remain unknown.In this study,we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis.Additionally,1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin(MTDH)and PX domain containing serine/threonine kinase-like(PXK)as novel binding targets of EGCG and ProEGCG,respectively.Computational simulation and BioLayer interferometry were used to confirm their binding affinity.Our results showed that MTDH-EGCG inhibited protein kinase B(Akt)-mediated angiogenesis,while PXK-ProEGCG inhibited epidermal growth factor(EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor(HIF-1a)/vascular endothelial growth factor(VEGF)pathway.In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways.Moreover,our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.
基金supported by the National Natural Science Foundation of China,No.82071278(to PY)Outstanding Young Medical Talents Project of Changhai Hospital,No.2021JCSQ03(to PY)+1 种基金Shanghai Sailing Program,No.20YF1448000(to XZ)Medical Health Science and Technology Project of Zhoushan City,No.2022JRC01(to HL).
文摘Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins,peptides,nucleotides,and lipids secreted from their cellular sources.Increasing evidence shows that exosomes participate in a communication network in the nervous system,in which astrocyte-derived exosomes play important roles.In this review,we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system.We also discuss the potential research directions of the exosome-based communication network in the nervous system.The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain.New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
基金Supported by Central Talent Training Project for the Reform and Development of Local Colleges and Universities(2020GSP16)Guidance Project of Key R&D Plan in Heilongjiang Province(GZ20220039)Innovation and Entrepreneurship Training Program for College Students in Heilongjiang Province(202310223173).
文摘In this paper,the pharmacological effects and molecular mechanisms of sarsasapogenin,such as anti-oxidant,anti-inflammatory and anti-diabetic effects,are reviewed in order to provide a theoretical basis for the subsequent development and clinical application of sarsasapogenin.
文摘BACKGROUND Modern pharmacological studies have confirmed that plant-derived compounds from Puerariae flos(PF)has significant biological activities against liver damage,tumors and inflammation.Kakkatin is an isoflavone polyphenolic compound isolated from PF flower.However,the effect of kakkatin and its derivatives on anti-tumor has not been well explored.AIM To design and synthesize a kakkatin derivative[6-(hept-6-yn-1-yloxy)-3-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one(HK)]to explore its anti-tumor biological activity.METHODS Hept-6-yn-1-yl ethanesulfonate was introduced to replace hydrogen at the hydroxyl position of kakkatin phenol,and the derivative of kakkatin was prepared;the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to detect cell viability,a clone formation assay was adopted to detect cell proliferation,apoptosis,necrosis,and cell cycles were analyzed by Annexin V/propidium iodide staining and flow cytometry.Cell migration and invasion ability were evaluated by cell scratch assay and transwell assay.The potential mechanism of HK on hepatocellular carcinoma(HCC)SMMC-7721 cells was explored through network pharmacology and molecular docking,and finally real-time PCR assays was used to verify the potential targets and evaluate the biological activity of HK.RESULTS Compared with kakkatin,the modified HK did not significantly increase the inhibitory activity of gastric cancer MGC803 cells,but the inhibitory activity of HCC SMMC-7721 cells was increased by about 30 times,with an IC50 value of 2.5μM,and the tumor inhibition effect was better than cisplatin,which could significantly inhibit the cloning,invasion and metastasis of HCC SMMC-7721 cells,and induce apoptosis and G2/M cycle arrest.Its mechanism of action is mainly related to the upregulation of PDE3B and NFKB1 target proteins in the cAMP pathway.CONCLUSION HK have a significant inhibitory effect on HCC SMMC-7721 cells,and the targets of their action may be PDE3B and NFKB1 proteins in the cAMP pathway,making it a good lead drug for the treatment of HCC.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.