BACKGROUND:This study aimed to explore the changes of programmed death-ligand 1(PDL1)and programmed death-1(PD-1)expression on antigen-presenting cells(APCs)and evaluate their association with organ failure and mortal...BACKGROUND:This study aimed to explore the changes of programmed death-ligand 1(PDL1)and programmed death-1(PD-1)expression on antigen-presenting cells(APCs)and evaluate their association with organ failure and mortality during early sepsis.METHODS:In total,40 healthy controls and 198 patients with sepsis were included in this study.Peripheral blood was collected within the first 24 h after the diagnosis of sepsis.The expression of PDL1 and PD-1 was determined on APCs,such as B cells,monocytes,and dendritic cells(DCs),by flow cytometry.Cytokines in plasma,such as interferon-γ(IFN-γ),tumor necrosis factor-α(TNF-α),interleukin-4(IL-4),IL-6,IL-10,and IL-17A were determined by Luminex assay.RESULTS:PD-1 expression decreased significantly on B cells,monocytes,myeloid DCs(mDCs),and plasmacytoid DCs(pDCs)as the severity of sepsis increased.PD-1 expression was also markedly decreased in non-survivors compared with survivors.In contrast,PD-L1 expression was markedly higher on mDCs,pDCs,and monocytes in patients with sepsis than in healthy controls and in non-survivors than in survivors.The PD-L1 expression on APCs(monocytes and DCs)was weakly related to organ dysfunction and infl ammation.The area under the receiver operating characteristic curve(AUC)of the PD-1 percentage of monocytes(monocyte PD-1%)+APACHE II model(0.823)and monocyte PD-1%+SOFA model(0.816)had higher prognostic value than other parameters alone.Monocyte PD-1%was an independent risk factor for 28-day mortality.CONCLUSION:The severity of sepsis was correlated with PD-L1 or PD-1 over-expression on APCs.PD-L1 in monocytes and DCs was weakly correlated with infl ammation and organ dysfunction during early sepsis.The combination of SOFA or APACHE II scores with monocyte PD-1%could improve the prediction ability for mortality.展开更多
The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance of the commensal microbiota. Inflammatory bowel disease (IBD) involves a breakdown in tolerance...The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance of the commensal microbiota. Inflammatory bowel disease (IBD) involves a breakdown in tolerance towards the microbiota. Dendritic cells (DC), macrophages (MΦ) and B-cells are known as professional antigen-presenting cells (APC) due to their specialization in presenting processed antigen to T-cells, and in turn shaping types of T-cell responses generated. Intestinal DC are migratory cells, unique in their ability to generate primary T-cell responses in mesenteric lymph nodes or Peyer’s patches, whilst MΦ and B-cells contribute to polarization and differentiation of secondary T-cell responses in the gut lamina propria. The antigen-sampling function of gut DC and MΦ enables them to sample bacterial antigens from the gut lumen to determine types of T-cell responses generated. The primary function of intestinal B-cells involves their secretion of large amounts of immunoglobulin A, which in turn contributes to epithelial barrier function and limits immune responses towards to microbiota. Here, we review the role of all three types of APC in intestinal immunity, both in the steady state and in inflammation, and how these cells interact with one another, as well as with the intestinal microenvironment, to shape mucosal immune responses. We describe mechanisms of maintaining intestinal immune tolerance in the steady state but also inappropriate responses of APC to components of the gut microbiota that contribute to pathology in IBD.展开更多
Objective:To develop a novel artificial antigen-presenting system for efficiently inducing melanoma-specific CD8+CD28+ cytotoxic T lymphocyte(CTL) responses.Methods:Cell-sized Dynabeads? M-450 Epoxy beads coated wit...Objective:To develop a novel artificial antigen-presenting system for efficiently inducing melanoma-specific CD8+CD28+ cytotoxic T lymphocyte(CTL) responses.Methods:Cell-sized Dynabeads? M-450 Epoxy beads coated with H-2Kb:Ig-TRP2(181111K and anti-CD28 antibody were used as artificial antigen-presenting cells(aAPCs) lo induce melanoma-specific CD8*CD28’ CTL responses with the help of IL-2I and IL-I5.Dimer staining,proliferation,ELISPOT,and cytotoxicity experiments were conducted to evaluate the frequency and activity of induced CTLs.Results:Dimer staining demonstrated that the new artificial antigen-presenting system efficiently induced melanoma TRP2-specific CD8CD28' CTLs.Proliferation and ELISPOT assays indicated that the induced CTLs rapidly proliferate and produce increased IFN- y under the slimulalion of H-2K:Ig-TRP2-aAPCs,TL-15,and IL-21.In addition,cytoloxicily experiments showed lhat induced CTLs have specific killing activity of target cells.Conclusions:The new artificial antigen-presenting system including aAPCs plus IL-21 and IL-15 can induce a large number of antigen-specific CD8+CD28+ CTLs against the melanoma.Our study provides evidence for a novel adoptive immunotherapy against tumors.展开更多
AIM:To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells.METHODS:Ganeden Bacillus coagulans 30(GBC30) bacterial cultures in log phase were used to isolate the secreted m...AIM:To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells.METHODS:Ganeden Bacillus coagulans 30(GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite(MET) fraction.A second fraction was made to generate a crude cell-wall-enriched fraction,by centrifugation and lysis,followed by washing.A preparation of MET was subjected to size exclusion centrifugation,generating three fractions:< 3 kDa,3-30 kDa,and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell(PBMC) as a source of antigen-presenting mononuclear phagocytes.The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14,CD16,CD80 and CD86 and analyzed by flow cytometry.RESULTS:Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes.The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells,and this property was associated with the high molecular weight metabolite fraction.Changes were also seen for the dendritic cell maturation markers CD80 and CD86.On CD14dim cells,an increase in both CD80 and CD86 expression was seen,in contrast to a selective increase in CD86 expression on CD14bright cells.The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation.The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells.CONCLUSION:The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells,important for immunological decision-making.展开更多
AIM:To investigate the anti-inflammatory effects of cinnamon extract and elucidate its mechanisms for targeting the function of antigen presenting cells.METHODS:Cinnamon extract was used to treat murine macrophage cel...AIM:To investigate the anti-inflammatory effects of cinnamon extract and elucidate its mechanisms for targeting the function of antigen presenting cells.METHODS:Cinnamon extract was used to treat murine macrophage cell line(Raw 264.7),mouse primary antigen-presenting cells(APCs,MHCII+) and CD11c+dendritic cells to analyze the effects of cinnamon extract on APC function.The mechanisms of action of cinnamon extract on APCs were investigated by analyzing cytokine production,and expression of MHC antigens and co-stimulatory molecules by quantitative real-time PCR and flow cytometry.In addition,the effect of cinnamon extract on antigen presentation capacity and APC-dependent T-cell differentiation were analyzed by [H3]-thymidine incorporation and cytokine analysis,respectively.To confirm the anti-inflammatory effects of cinnamon extract in vivo,cinnamon or PBS was orally administered to mice for 20 d followed by induction of experimental colitis with 2,4,6 trinitrobenzenesulfonic acid.The protective effects of cinnamon extract against experimental colitis were measured by checking clinical symptoms,histological analysis and cytokine expression prof iles in inflamed tissue.RESULTS:Treatment with cinnamon extract inhibited maturation of MHCII+ APCs or CD11c+ dendritic cells(DCs) by suppressing expression of co-stimulatory molecules(B7.1,B7.2,ICOS-L),MHCII and cyclooxygenase(COX)-2.Cinnamon extract induced regulatory DCs(rDCs) that produce low levels of pro-inflammatory cytokines [interleukin(IL)-1β,IL-6,IL-12,interferon(IFN)-γ and tumor necrosis factor(TNF)-α] while expressing high levels of immunoregulatory cytokines(IL-10 and transforming growth factor-β).In addition,rDCs generated by cinnamon extract inhibited APC-dependent T-cell proliferation,and converted CD4+ T cells into IL-10high CD4+ T cells.Furthermore,oral administration of cinnamon extract inhibited development and progression of intestinal colitis by inhibiting expression of COX-2 and pro-inflammatory cytokines(IL-1β,IFN-γ and TNF-α),while enhancing IL-10 levels.CONCLUSION:Our study suggests the potential of cinnamon extract as an anti-inflammatory agent by targeting the generation of regulatory APCs and IL-10+ regulatory T cells.展开更多
Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclon...Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclonal antibody was genetically expressed on human K562 leukemia cells to provide a ligand for T-cell receptor. CD86 and 4-1BBL, which are ligands of co-stimulating receptors of CD28 and 4-1BB, respectively, were also expressed on K562 cells. Then we accomplished the artificial antigen-presenting cells by coupling K32/CD86/4-1BBL cell with OKT3 monoclonal antibody against CD3, named K32/CD86/4-1BBL/OKT3 cells. These artificial modified cells had the abilities of inducing CD8^+ T cell activation, promoting CD8^+ T cell proliferation, division, and long-term growth, inhibiting CD8^+ T cell apoptosis, and enhancing CD8^+ T cell secretion of IFN-T and perforin. Furthermore, antigen-specific cytotoxic T lymphocytes could be retained in the culture stimulated with K32/CD86/4-1BBL/OKT3 cells at least within 28 days. This approach was robust, simple, reproducible and economical for expansion and activation of CD8^+ T cells and may have important therapeutic implications for adoptive immunotherapy. Cellular & Molecular Immunology.展开更多
Stimulator of interferon genes(STING)-mediated innate immune activation plays a key role in tumor-and self-DNA-elicited antitumor immunity and autoimmunity.However,STING can also suppress tumor immunity and autoimmuni...Stimulator of interferon genes(STING)-mediated innate immune activation plays a key role in tumor-and self-DNA-elicited antitumor immunity and autoimmunity.However,STING can also suppress tumor immunity and autoimmunity.STING signaling In host nonhematopoietic cells was reported to either protect against or promote graft-versus-host disease(GVHD),a major complication of allogeneic hematopoietic cell transplantation(allo-HCT).Host hematopoietic antigen-presenting cells(APCs)play key roles in donor T-cell priming during GVHD initiation.However,how STING regulates host hematopoietic APCs after allo-HCT remains unknown.We utilized murine models of allo-HCT to assess the role of STING in hematopoietic APCs.STING-deficient recipients developed more severe GVHD after major histocompatibility complex-mismatched allo-HCT.Using bone marrow chimeras,we found that STING deficiency in host hematopoietic cells was primarily responsible for exacerbating the disease.Furthermore,STING on host CD11c+cells played a dominant role in suppressing allogeneic T-cell responses.Mechanistically,STING deficiency resulted in increased survival,activation,and function of APCs,including macrophages and dendritic cells.Consistently,constitutive activation of STING attenuated the survival,activation,and function of APCs isolated from STING V154M knock-in mice.STING-deficient APCs augmented donor T-cell expansion,chemokine receptor expression,and migration into intestinal tissues,resulting in accelerated/exacerbated GVHD.Using pharmacologic approaches,we demonstrated that systemic administration of a STING agonist(bis-(3'-5')-cyclic dimeric guanosine monophosphate)to recipient mice before transplantation significantly reduced GVHD mortality.In conclusion,we revealed a novel role of STING in APC activity that dictates T-cell allogeneic responses and validated STING as a potential therapeutic target for controlling GVHD after allo-HCT.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ...Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
In this editorial,we comment on the article published in the recent issue of the World Journal of Stem Cells.They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionineγ-lyase/hydro...In this editorial,we comment on the article published in the recent issue of the World Journal of Stem Cells.They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionineγ-lyase/hydrogen sulfide(H_(2)S)pathway as a novel approach to treat vascular disorders,particularly pulmonary hypertension.Preconditioned stem cells are gaining popularity in regenerative medicine due to their unique ability to survive by resisting the harsh,unfavorable microenvironment of the injured tissue.They also secrete various paracrine factors against apoptosis,necrosis,and ferroptosis to enhance cell survival.Ferroptosis,a regulated form of cell death characterized by iron accumulation and oxidative stress,has been implicated in various pathologies encompassing dege-nerative disorders to cancer.The lipid peroxidation cascade initiates and sustains ferroptosis,generating many reactive oxygen species that attack and damage multiple cellular structures.Understanding these intertwined mechanisms provi-des significant insights into developing therapeutic modalities for ferroptosis-related diseases.This editorial primarily discusses stem cell preconditioning in modulating ferroptosis,focusing on the cystathionase gamma/H_(2)S ferroptosis pathway.Ferroptosis presents a significant challenge in mesenchymal stem cell(MSC)-based therapies;hence,the emerging role of H_(2)S/cystathionase gamma/H_(2) S signaling in abrogating ferroptosis provides a novel option for therapeutic intervention.Further research into understanding the precise mechanisms of H_(2)S-mediated cytoprotection against ferroptosis is warranted to enhance the thera-peutic potential of MSCs in clinical settings,particularly vascular disorders.展开更多
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke trea...Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function.Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect.Neural stem cells regulate multiple physiological responses,including nerve repair,endogenous regeneration,immune function,and blood-brain barrier permeability,through the secretion of bioactive substances,including extracellular vesicles/exosomes.However,due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation,limitations in the treatment effect remain unresolved.In this paper,we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke,review current neural stem cell therapeutic strategies and clinical trial results,and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells.We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.展开更多
Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not r...Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.展开更多
BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone an...BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone and brain;however,pancreatic metastasis is relatively rare.CASE SUMMARY We report on a rare case of CCS with pancreatic metastasis in a 47-year-old man.The patient had a relevant medical history 3 years ago,with abdominal pain as the main clinical manifestation.No abnormalities were observed on physical examination and the tumor was found on abdominal computed tomography.Based on the medical history and postoperative pathology,the patient was diagnosed with CCS with pancreatic metastasis.The patient was successfully treated with surgical interventions,including distal pancreatectomy and sple-nectomy.CONCLUSION This report summarizes the available treatment modalities for CCS and the importance of regular postoperative follow-up for patients with CCS.展开更多
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime...Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.展开更多
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each ...The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes.展开更多
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p...Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.展开更多
文摘BACKGROUND:This study aimed to explore the changes of programmed death-ligand 1(PDL1)and programmed death-1(PD-1)expression on antigen-presenting cells(APCs)and evaluate their association with organ failure and mortality during early sepsis.METHODS:In total,40 healthy controls and 198 patients with sepsis were included in this study.Peripheral blood was collected within the first 24 h after the diagnosis of sepsis.The expression of PDL1 and PD-1 was determined on APCs,such as B cells,monocytes,and dendritic cells(DCs),by flow cytometry.Cytokines in plasma,such as interferon-γ(IFN-γ),tumor necrosis factor-α(TNF-α),interleukin-4(IL-4),IL-6,IL-10,and IL-17A were determined by Luminex assay.RESULTS:PD-1 expression decreased significantly on B cells,monocytes,myeloid DCs(mDCs),and plasmacytoid DCs(pDCs)as the severity of sepsis increased.PD-1 expression was also markedly decreased in non-survivors compared with survivors.In contrast,PD-L1 expression was markedly higher on mDCs,pDCs,and monocytes in patients with sepsis than in healthy controls and in non-survivors than in survivors.The PD-L1 expression on APCs(monocytes and DCs)was weakly related to organ dysfunction and infl ammation.The area under the receiver operating characteristic curve(AUC)of the PD-1 percentage of monocytes(monocyte PD-1%)+APACHE II model(0.823)and monocyte PD-1%+SOFA model(0.816)had higher prognostic value than other parameters alone.Monocyte PD-1%was an independent risk factor for 28-day mortality.CONCLUSION:The severity of sepsis was correlated with PD-L1 or PD-1 over-expression on APCs.PD-L1 in monocytes and DCs was weakly correlated with infl ammation and organ dysfunction during early sepsis.The combination of SOFA or APACHE II scores with monocyte PD-1%could improve the prediction ability for mortality.
文摘The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance of the commensal microbiota. Inflammatory bowel disease (IBD) involves a breakdown in tolerance towards the microbiota. Dendritic cells (DC), macrophages (MΦ) and B-cells are known as professional antigen-presenting cells (APC) due to their specialization in presenting processed antigen to T-cells, and in turn shaping types of T-cell responses generated. Intestinal DC are migratory cells, unique in their ability to generate primary T-cell responses in mesenteric lymph nodes or Peyer’s patches, whilst MΦ and B-cells contribute to polarization and differentiation of secondary T-cell responses in the gut lamina propria. The antigen-sampling function of gut DC and MΦ enables them to sample bacterial antigens from the gut lumen to determine types of T-cell responses generated. The primary function of intestinal B-cells involves their secretion of large amounts of immunoglobulin A, which in turn contributes to epithelial barrier function and limits immune responses towards to microbiota. Here, we review the role of all three types of APC in intestinal immunity, both in the steady state and in inflammation, and how these cells interact with one another, as well as with the intestinal microenvironment, to shape mucosal immune responses. We describe mechanisms of maintaining intestinal immune tolerance in the steady state but also inappropriate responses of APC to components of the gut microbiota that contribute to pathology in IBD.
基金supported,in part,by grants from the Program for New Century Excellent Talents in University(NECT-10-0098)the National Natural Scientific Foundation of China(Nos.81072161.81000769.81172139.and 81060183)+3 种基金Programs for Changjiang Scholars and Innovative Research Team in University(No. IRT1119)Innovative Research Team in Guangxi Natural Science Foundation (No.2011-18-5)Fund for Distinguished Young Scholars in Guangxi Natural Science Foundation(2012jjFA40005)Project of science and technology of Guangxi (1140003A-17)
文摘Objective:To develop a novel artificial antigen-presenting system for efficiently inducing melanoma-specific CD8+CD28+ cytotoxic T lymphocyte(CTL) responses.Methods:Cell-sized Dynabeads? M-450 Epoxy beads coated with H-2Kb:Ig-TRP2(181111K and anti-CD28 antibody were used as artificial antigen-presenting cells(aAPCs) lo induce melanoma-specific CD8*CD28’ CTL responses with the help of IL-2I and IL-I5.Dimer staining,proliferation,ELISPOT,and cytotoxicity experiments were conducted to evaluate the frequency and activity of induced CTLs.Results:Dimer staining demonstrated that the new artificial antigen-presenting system efficiently induced melanoma TRP2-specific CD8CD28' CTLs.Proliferation and ELISPOT assays indicated that the induced CTLs rapidly proliferate and produce increased IFN- y under the slimulalion of H-2K:Ig-TRP2-aAPCs,TL-15,and IL-21.In addition,cytoloxicily experiments showed lhat induced CTLs have specific killing activity of target cells.Conclusions:The new artificial antigen-presenting system including aAPCs plus IL-21 and IL-15 can induce a large number of antigen-specific CD8+CD28+ CTLs against the melanoma.Our study provides evidence for a novel adoptive immunotherapy against tumors.
基金Supported by A Research Sponsorship from Ganeden Biotech, Ohio,United States
文摘AIM:To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells.METHODS:Ganeden Bacillus coagulans 30(GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite(MET) fraction.A second fraction was made to generate a crude cell-wall-enriched fraction,by centrifugation and lysis,followed by washing.A preparation of MET was subjected to size exclusion centrifugation,generating three fractions:< 3 kDa,3-30 kDa,and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell(PBMC) as a source of antigen-presenting mononuclear phagocytes.The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14,CD16,CD80 and CD86 and analyzed by flow cytometry.RESULTS:Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes.The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells,and this property was associated with the high molecular weight metabolite fraction.Changes were also seen for the dendritic cell maturation markers CD80 and CD86.On CD14dim cells,an increase in both CD80 and CD86 expression was seen,in contrast to a selective increase in CD86 expression on CD14bright cells.The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation.The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells.CONCLUSION:The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells,important for immunological decision-making.
基金Supported by Grants from the BioGreen 21 Program, Rural Development Administration (PJ007054)Regional Technology Innovation Program of the MOCIE (RTI05-01-01)Korea Healthcare Technology R&D Project, Ministry of Health and Welfare (A080588-20)
文摘AIM:To investigate the anti-inflammatory effects of cinnamon extract and elucidate its mechanisms for targeting the function of antigen presenting cells.METHODS:Cinnamon extract was used to treat murine macrophage cell line(Raw 264.7),mouse primary antigen-presenting cells(APCs,MHCII+) and CD11c+dendritic cells to analyze the effects of cinnamon extract on APC function.The mechanisms of action of cinnamon extract on APCs were investigated by analyzing cytokine production,and expression of MHC antigens and co-stimulatory molecules by quantitative real-time PCR and flow cytometry.In addition,the effect of cinnamon extract on antigen presentation capacity and APC-dependent T-cell differentiation were analyzed by [H3]-thymidine incorporation and cytokine analysis,respectively.To confirm the anti-inflammatory effects of cinnamon extract in vivo,cinnamon or PBS was orally administered to mice for 20 d followed by induction of experimental colitis with 2,4,6 trinitrobenzenesulfonic acid.The protective effects of cinnamon extract against experimental colitis were measured by checking clinical symptoms,histological analysis and cytokine expression prof iles in inflamed tissue.RESULTS:Treatment with cinnamon extract inhibited maturation of MHCII+ APCs or CD11c+ dendritic cells(DCs) by suppressing expression of co-stimulatory molecules(B7.1,B7.2,ICOS-L),MHCII and cyclooxygenase(COX)-2.Cinnamon extract induced regulatory DCs(rDCs) that produce low levels of pro-inflammatory cytokines [interleukin(IL)-1β,IL-6,IL-12,interferon(IFN)-γ and tumor necrosis factor(TNF)-α] while expressing high levels of immunoregulatory cytokines(IL-10 and transforming growth factor-β).In addition,rDCs generated by cinnamon extract inhibited APC-dependent T-cell proliferation,and converted CD4+ T cells into IL-10high CD4+ T cells.Furthermore,oral administration of cinnamon extract inhibited development and progression of intestinal colitis by inhibiting expression of COX-2 and pro-inflammatory cytokines(IL-1β,IFN-γ and TNF-α),while enhancing IL-10 levels.CONCLUSION:Our study suggests the potential of cinnamon extract as an anti-inflammatory agent by targeting the generation of regulatory APCs and IL-10+ regulatory T cells.
基金the National Natural Science Foundation of China(No.30400399,No.30671917)the Natural Science Fund of Jiangsu Province(BK2004404) the Natural Science Fund of the Educational Committee of Jiangsu Province(04KJB320162) in China.
文摘Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclonal antibody was genetically expressed on human K562 leukemia cells to provide a ligand for T-cell receptor. CD86 and 4-1BBL, which are ligands of co-stimulating receptors of CD28 and 4-1BB, respectively, were also expressed on K562 cells. Then we accomplished the artificial antigen-presenting cells by coupling K32/CD86/4-1BBL cell with OKT3 monoclonal antibody against CD3, named K32/CD86/4-1BBL/OKT3 cells. These artificial modified cells had the abilities of inducing CD8^+ T cell activation, promoting CD8^+ T cell proliferation, division, and long-term growth, inhibiting CD8^+ T cell apoptosis, and enhancing CD8^+ T cell secretion of IFN-T and perforin. Furthermore, antigen-specific cytotoxic T lymphocytes could be retained in the culture stimulated with K32/CD86/4-1BBL/OKT3 cells at least within 28 days. This approach was robust, simple, reproducible and economical for expansion and activation of CD8^+ T cells and may have important therapeutic implications for adoptive immunotherapy. Cellular & Molecular Immunology.
基金supported in part by the Hollings Cancer Center Fellowship(to V.W.)NIH Grant R01CA163910(to C.-CAH.)NIH ROIs AI118305,HL137373,and HL140953(to X.-Z.Y.).
文摘Stimulator of interferon genes(STING)-mediated innate immune activation plays a key role in tumor-and self-DNA-elicited antitumor immunity and autoimmunity.However,STING can also suppress tumor immunity and autoimmunity.STING signaling In host nonhematopoietic cells was reported to either protect against or promote graft-versus-host disease(GVHD),a major complication of allogeneic hematopoietic cell transplantation(allo-HCT).Host hematopoietic antigen-presenting cells(APCs)play key roles in donor T-cell priming during GVHD initiation.However,how STING regulates host hematopoietic APCs after allo-HCT remains unknown.We utilized murine models of allo-HCT to assess the role of STING in hematopoietic APCs.STING-deficient recipients developed more severe GVHD after major histocompatibility complex-mismatched allo-HCT.Using bone marrow chimeras,we found that STING deficiency in host hematopoietic cells was primarily responsible for exacerbating the disease.Furthermore,STING on host CD11c+cells played a dominant role in suppressing allogeneic T-cell responses.Mechanistically,STING deficiency resulted in increased survival,activation,and function of APCs,including macrophages and dendritic cells.Consistently,constitutive activation of STING attenuated the survival,activation,and function of APCs isolated from STING V154M knock-in mice.STING-deficient APCs augmented donor T-cell expansion,chemokine receptor expression,and migration into intestinal tissues,resulting in accelerated/exacerbated GVHD.Using pharmacologic approaches,we demonstrated that systemic administration of a STING agonist(bis-(3'-5')-cyclic dimeric guanosine monophosphate)to recipient mice before transplantation significantly reduced GVHD mortality.In conclusion,we revealed a novel role of STING in APC activity that dictates T-cell allogeneic responses and validated STING as a potential therapeutic target for controlling GVHD after allo-HCT.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金supported by the National Natural Science Foundation of China,No.31960120Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(both to ZW).
文摘Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
文摘In this editorial,we comment on the article published in the recent issue of the World Journal of Stem Cells.They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionineγ-lyase/hydrogen sulfide(H_(2)S)pathway as a novel approach to treat vascular disorders,particularly pulmonary hypertension.Preconditioned stem cells are gaining popularity in regenerative medicine due to their unique ability to survive by resisting the harsh,unfavorable microenvironment of the injured tissue.They also secrete various paracrine factors against apoptosis,necrosis,and ferroptosis to enhance cell survival.Ferroptosis,a regulated form of cell death characterized by iron accumulation and oxidative stress,has been implicated in various pathologies encompassing dege-nerative disorders to cancer.The lipid peroxidation cascade initiates and sustains ferroptosis,generating many reactive oxygen species that attack and damage multiple cellular structures.Understanding these intertwined mechanisms provi-des significant insights into developing therapeutic modalities for ferroptosis-related diseases.This editorial primarily discusses stem cell preconditioning in modulating ferroptosis,focusing on the cystathionase gamma/H_(2)S ferroptosis pathway.Ferroptosis presents a significant challenge in mesenchymal stem cell(MSC)-based therapies;hence,the emerging role of H_(2)S/cystathionase gamma/H_(2) S signaling in abrogating ferroptosis provides a novel option for therapeutic intervention.Further research into understanding the precise mechanisms of H_(2)S-mediated cytoprotection against ferroptosis is warranted to enhance the thera-peutic potential of MSCs in clinical settings,particularly vascular disorders.
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
基金supported by the National Natural Science Foundation of China,No.81971105(to ZNG)the Science and Technology Department of Jilin Province,No.YDZJ202201ZYTS677(to ZNG)+3 种基金Talent Reserve Program of the First Hospital of Jilin University,No.JDYYCB-2023002(to ZNG)the Norman Bethune Health Science Center of Jilin University,No.2022JBGS03(to YY)Science and Technology Department of Jilin Province,Nos.YDZJ202302CXJD061,20220303002SF(to YY)Jilin Provincial Key Laboratory,No.YDZJ202302CXJD017(to YY).
文摘Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function.Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect.Neural stem cells regulate multiple physiological responses,including nerve repair,endogenous regeneration,immune function,and blood-brain barrier permeability,through the secretion of bioactive substances,including extracellular vesicles/exosomes.However,due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation,limitations in the treatment effect remain unresolved.In this paper,we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke,review current neural stem cell therapeutic strategies and clinical trial results,and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells.We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
基金supported by NIH Core Grants P30-EY008098the Eye and Ear Foundation of Pittsburghunrestricted grants from Research to Prevent Blindness,New York,NY,USA(to KCC)。
文摘Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.
文摘BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone and brain;however,pancreatic metastasis is relatively rare.CASE SUMMARY We report on a rare case of CCS with pancreatic metastasis in a 47-year-old man.The patient had a relevant medical history 3 years ago,with abdominal pain as the main clinical manifestation.No abnormalities were observed on physical examination and the tumor was found on abdominal computed tomography.Based on the medical history and postoperative pathology,the patient was diagnosed with CCS with pancreatic metastasis.The patient was successfully treated with surgical interventions,including distal pancreatectomy and sple-nectomy.CONCLUSION This report summarizes the available treatment modalities for CCS and the importance of regular postoperative follow-up for patients with CCS.
基金supported by the National Natural Science Foundation of China,No.82074533(to LZ).
文摘Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.
文摘The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes.
基金supported by the National Key Research and Development Program of China,Nos.2017YFE0122900(to BH),2019YFA0110800(to WL),2019YFA0903802(to YW),2021YFA1101604(to LW),2018YFA0108502(to LF),and 2020YFA0804003(to JW)the National Natural Science Foundation of China,Nos.31621004(to WL,BH)and 31970821(to YW)+1 种基金CAS Project for Young Scientists in Basic Research,No.YSBR-041(to YW)Joint Funds of the National Natural Science Foundation of China,No.U21A20396(to BH)。
文摘Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.