By using the dynamical system method to study the 2D-generalized Benney- Luke equation, the existence of kink wave solutions and uncountably infinite many smooth periodic wave solutions is shown. Explicit exact parame...By using the dynamical system method to study the 2D-generalized Benney- Luke equation, the existence of kink wave solutions and uncountably infinite many smooth periodic wave solutions is shown. Explicit exact parametric representations for solutions of kink wave, periodic wave and unbounded traveling wave are obtained.展开更多
This paper studies the dynamic behaviors of some exact traveling wave solutions to the generalized Zakharov equation and the Ginzburg-Landau equation. The effects of the behaviors on the parameters of the systems are ...This paper studies the dynamic behaviors of some exact traveling wave solutions to the generalized Zakharov equation and the Ginzburg-Landau equation. The effects of the behaviors on the parameters of the systems are also studied by using a dynamical system method. Six exact explicit parametric representations of the traveling wave solutions to the two equations are given.展开更多
研究了时滞线性位移反馈对一类单自由度非线性的自激振动系统动力学行为的影响规律。所考虑的数学模型为时滞Duffing方程,是由原Van der Pol-Duffing振子系统加入线性时滞位置反馈而得到。定性地研究时滞和反馈增益联合作用对Van der Po...研究了时滞线性位移反馈对一类单自由度非线性的自激振动系统动力学行为的影响规律。所考虑的数学模型为时滞Duffing方程,是由原Van der Pol-Duffing振子系统加入线性时滞位置反馈而得到。定性地研究时滞和反馈增益联合作用对Van der Pol-Duffing系统周期解的影响规律,发现时滞可使该系统出现多个周期解共存的现象。通过本文构造的解析方法,从理论上预测了由时滞导致的系统周期解个数及其稳定性随着时滞反馈增益和时滞量的变化规律,得到了不同周期解的频率和振幅。从数值上采用Runge-Kutta法,验证了理论分析结果的有效性,并划分不同周期解所对应的吸引域。结果对进一步研究镇定系统和混沌运动机理有着潜在的应用价值。展开更多
文章对一类经典的非线性动力系统模型——三级电子管电路的VAN DER POL方程进行稳定性分析.首先,通过线性近似法对该微分方程在零点处的稳定性态做出判断,得出结论:该方程在零点处不稳定.再证明该模型存在唯一的极限环,最后用二变量多...文章对一类经典的非线性动力系统模型——三级电子管电路的VAN DER POL方程进行稳定性分析.首先,通过线性近似法对该微分方程在零点处的稳定性态做出判断,得出结论:该方程在零点处不稳定.再证明该模型存在唯一的极限环,最后用二变量多尺度法求出该方程的周期解.通过所求得的周期解,近似得出该模型的极限环.展开更多
It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions f...It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions for four nonlinear wave equations are discussed. Exact explicit parametric representations of some special travelling wave solutions are given. The results of this paper show that a loop solution consists of three different breaking travelling wave solutions. It is not one real loop soliton travelling wave solution.展开更多
In this paper we presented a convergence condition of parallel dynamic iteration methods for a nonlinear system of differential-algebraic equations with a periodic constraint. The convergence criterion is decided by t...In this paper we presented a convergence condition of parallel dynamic iteration methods for a nonlinear system of differential-algebraic equations with a periodic constraint. The convergence criterion is decided by the spectral expression of a linear operator derived from system partitions. Numerical experiments given here confirm the theoretical work of the paper.展开更多
基金the National Natural Science Foundation of China(Nos.10671179 and 10772158)
文摘By using the dynamical system method to study the 2D-generalized Benney- Luke equation, the existence of kink wave solutions and uncountably infinite many smooth periodic wave solutions is shown. Explicit exact parametric representations for solutions of kink wave, periodic wave and unbounded traveling wave are obtained.
基金supported by the Natural Science Foundation of Ningbo City of China(No.2008A610029)
文摘This paper studies the dynamic behaviors of some exact traveling wave solutions to the generalized Zakharov equation and the Ginzburg-Landau equation. The effects of the behaviors on the parameters of the systems are also studied by using a dynamical system method. Six exact explicit parametric representations of the traveling wave solutions to the two equations are given.
文摘研究了时滞线性位移反馈对一类单自由度非线性的自激振动系统动力学行为的影响规律。所考虑的数学模型为时滞Duffing方程,是由原Van der Pol-Duffing振子系统加入线性时滞位置反馈而得到。定性地研究时滞和反馈增益联合作用对Van der Pol-Duffing系统周期解的影响规律,发现时滞可使该系统出现多个周期解共存的现象。通过本文构造的解析方法,从理论上预测了由时滞导致的系统周期解个数及其稳定性随着时滞反馈增益和时滞量的变化规律,得到了不同周期解的频率和振幅。从数值上采用Runge-Kutta法,验证了理论分析结果的有效性,并划分不同周期解所对应的吸引域。结果对进一步研究镇定系统和混沌运动机理有着潜在的应用价值。
文摘文章对一类经典的非线性动力系统模型——三级电子管电路的VAN DER POL方程进行稳定性分析.首先,通过线性近似法对该微分方程在零点处的稳定性态做出判断,得出结论:该方程在零点处不稳定.再证明该模型存在唯一的极限环,最后用二变量多尺度法求出该方程的周期解.通过所求得的周期解,近似得出该模型的极限环.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10671179)the Natural Science Foundation of Yunnan Province (Grant No. 2005A0013M)
文摘It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions for four nonlinear wave equations are discussed. Exact explicit parametric representations of some special travelling wave solutions are given. The results of this paper show that a loop solution consists of three different breaking travelling wave solutions. It is not one real loop soliton travelling wave solution.
基金This research work was supported by the Natural Science Foundation of China NSFC 10171080,the 863 Program of China 2001AA111042,and the scientific research foundation for the returned overseas Chinese scholars,State Education Ministry
文摘In this paper we presented a convergence condition of parallel dynamic iteration methods for a nonlinear system of differential-algebraic equations with a periodic constraint. The convergence criterion is decided by the spectral expression of a linear operator derived from system partitions. Numerical experiments given here confirm the theoretical work of the paper.