A series of novel adsorbents composed of cellulose(CL)with Ca/Al layered double hydroxide(CC_(x)A;where x represent the Ca/Al molar ratio)were prepared for the adsorption of antimony(Sb(V))and fluoride(F^(-))ions from...A series of novel adsorbents composed of cellulose(CL)with Ca/Al layered double hydroxide(CC_(x)A;where x represent the Ca/Al molar ratio)were prepared for the adsorption of antimony(Sb(V))and fluoride(F^(-))ions from aqueous solutions.The CC_(x)A was characterized by Fourier-transform infrared spectroscopy(FTIR),Brunauer–Emmett–Teller(BET),elemental analysis(CHNS/O),thermogravimetric analysis(TGA-DTA),zeta potential,X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive Xray spectroscopy(SEM-EDX)analysis.The effects of varying parameters such as dose,pH,contact time,temperature and initial concentration on the adsorption process were investigated.According to the obtained results,the adsorption processes were described by a pseudo-second-order kinetic model.Langmuir adsorption isotherm model provided the best fit for the experimental data and was used to describe isotherm constants.The maximum adsorption capacity was found to be 77.2 and 63.1 mg/g for Sb(V)and F^(-),respectively by CC_(3)A(experimental conditions:pH 5.5,time 60 min,dose 15 mg/10 mL,temperature 298 K).The CC_(3)A nanocomposite was able to reduce the Sb(V)and F^(-)ions concentration in synthetic solution to lower than 6μg/L and 1.5 mg/L,respectively,which are maximum contaminant levels of these elements in drinking water according to WHO guidelines.展开更多
文摘A series of novel adsorbents composed of cellulose(CL)with Ca/Al layered double hydroxide(CC_(x)A;where x represent the Ca/Al molar ratio)were prepared for the adsorption of antimony(Sb(V))and fluoride(F^(-))ions from aqueous solutions.The CC_(x)A was characterized by Fourier-transform infrared spectroscopy(FTIR),Brunauer–Emmett–Teller(BET),elemental analysis(CHNS/O),thermogravimetric analysis(TGA-DTA),zeta potential,X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive Xray spectroscopy(SEM-EDX)analysis.The effects of varying parameters such as dose,pH,contact time,temperature and initial concentration on the adsorption process were investigated.According to the obtained results,the adsorption processes were described by a pseudo-second-order kinetic model.Langmuir adsorption isotherm model provided the best fit for the experimental data and was used to describe isotherm constants.The maximum adsorption capacity was found to be 77.2 and 63.1 mg/g for Sb(V)and F^(-),respectively by CC_(3)A(experimental conditions:pH 5.5,time 60 min,dose 15 mg/10 mL,temperature 298 K).The CC_(3)A nanocomposite was able to reduce the Sb(V)and F^(-)ions concentration in synthetic solution to lower than 6μg/L and 1.5 mg/L,respectively,which are maximum contaminant levels of these elements in drinking water according to WHO guidelines.