Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with ...Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application.展开更多
In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not sa...In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not satisfy the delay constraint, so we can ensure that all paths be taken into account will meet the limit of delay constraint, then we find the least costly path in order to build a minimum cost multicast tree. Simulation results show that the algorithm is better than ESAMPH algorithm in performance.展开更多
This paper focuses on solving the delay constrained least cost routing problem, and propose a simple, distributed heuristic solution, called distributed recursive delay constrained least cost (DR DCLC) unicast routing...This paper focuses on solving the delay constrained least cost routing problem, and propose a simple, distributed heuristic solution, called distributed recursive delay constrained least cost (DR DCLC) unicast routing algorithm. DR DCLC only requires local information to find the near optimal solution. The correctness of DR DCLC is proued by showing that it is always capable of constructing a loop free delay constrained path within finite time, if such a path exists. Simulation is also used to compare DR DCLC to the optimal DCLC algorithm and other algorithms.展开更多
基金This paper is supported by High-Tech Research and Development Program of China (Grant No. 2003AA001048) Young Teacher Foundation of School of Electronics and Information Engineering of Xi'an Jiaotong Univeristy.
文摘Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application.
文摘In this paper, we made a detail analysis for the ESAMPH algorithm, and proposed ESAMPH_D algorithm according to the insufficient of ESAMPH algorithm. The ESAMPH_D algorithm does not consider those paths that do not satisfy the delay constraint, so we can ensure that all paths be taken into account will meet the limit of delay constraint, then we find the least costly path in order to build a minimum cost multicast tree. Simulation results show that the algorithm is better than ESAMPH algorithm in performance.
文摘This paper focuses on solving the delay constrained least cost routing problem, and propose a simple, distributed heuristic solution, called distributed recursive delay constrained least cost (DR DCLC) unicast routing algorithm. DR DCLC only requires local information to find the near optimal solution. The correctness of DR DCLC is proued by showing that it is always capable of constructing a loop free delay constrained path within finite time, if such a path exists. Simulation is also used to compare DR DCLC to the optimal DCLC algorithm and other algorithms.