为使AP算法对图像进行聚类时充分考虑不同尺度的特征及有效利用未标记数据的特征,提出了结合特征金字塔网络的半监督AP聚类算法(Semi-supervised AP clustering Based on Feature Pyramid Networks, FPNSAP)。FPNSAP算法使用改进的特征...为使AP算法对图像进行聚类时充分考虑不同尺度的特征及有效利用未标记数据的特征,提出了结合特征金字塔网络的半监督AP聚类算法(Semi-supervised AP clustering Based on Feature Pyramid Networks, FPNSAP)。FPNSAP算法使用改进的特征金字塔网络来获得图像不同尺度的特征图,对不同大小的特征图进行融合,获得图像的高级语义特征,识别不同大小、不同实例的目标;k近邻标记更新策略可以动态增加标记数据集样本数量,充分利用未标记数据的特征,提高AP算法的聚类性能。FPNSAP算法与四个经典算法(FCH、SAP、DCN和DFCM)在Fashion-MNIST、YaleB和CIFAR-10数据集上进行实验对比,结果表明,FPNSAP算法具有较高的聚类性能,同时算法的鲁棒性更好。展开更多
随着可再生能源渗透水平的不断提高,现代电力系统面临着更多不可避免的不确定性,这些不确定性可能导致系统的弱阻尼振荡问题。对于可再生能源渗透率很高的电力系统,检测同步发电机之间的相干性是态势感知的关键环节。为此,文中提出了一...随着可再生能源渗透水平的不断提高,现代电力系统面临着更多不可避免的不确定性,这些不确定性可能导致系统的弱阻尼振荡问题。对于可再生能源渗透率很高的电力系统,检测同步发电机之间的相干性是态势感知的关键环节。为此,文中提出了一种基于广域测量系统(Based Area Measurement System,WAMS)的相干检测算法,该方法采用了核主成分分析(Kernel Principal Component Analysis,KPCA)和聚类(Affinity Propagation,AP)分析法可应用于可再生能源广泛渗透的电力系统。文中提出了几种轨迹相似度指标,用于确定惯性中心(Center of Inertia,COI)坐标中任意两个发电机轨迹之间的相似性;提出了一种基于KPCA方法的集成轨迹相似度指标,以解决多个指标之间的相干性问题;随后采用AP聚类分析方法检测同步发电机之间的相干性,可无需预先指定聚类的数量;利用高可再生能源发电渗透率的华南电力系统和包括张北风电场的华北电力系统的一部分进行仿真分析,结果证明了所提方法的适用性和实用性。展开更多
文摘为使AP算法对图像进行聚类时充分考虑不同尺度的特征及有效利用未标记数据的特征,提出了结合特征金字塔网络的半监督AP聚类算法(Semi-supervised AP clustering Based on Feature Pyramid Networks, FPNSAP)。FPNSAP算法使用改进的特征金字塔网络来获得图像不同尺度的特征图,对不同大小的特征图进行融合,获得图像的高级语义特征,识别不同大小、不同实例的目标;k近邻标记更新策略可以动态增加标记数据集样本数量,充分利用未标记数据的特征,提高AP算法的聚类性能。FPNSAP算法与四个经典算法(FCH、SAP、DCN和DFCM)在Fashion-MNIST、YaleB和CIFAR-10数据集上进行实验对比,结果表明,FPNSAP算法具有较高的聚类性能,同时算法的鲁棒性更好。
文摘随着可再生能源渗透水平的不断提高,现代电力系统面临着更多不可避免的不确定性,这些不确定性可能导致系统的弱阻尼振荡问题。对于可再生能源渗透率很高的电力系统,检测同步发电机之间的相干性是态势感知的关键环节。为此,文中提出了一种基于广域测量系统(Based Area Measurement System,WAMS)的相干检测算法,该方法采用了核主成分分析(Kernel Principal Component Analysis,KPCA)和聚类(Affinity Propagation,AP)分析法可应用于可再生能源广泛渗透的电力系统。文中提出了几种轨迹相似度指标,用于确定惯性中心(Center of Inertia,COI)坐标中任意两个发电机轨迹之间的相似性;提出了一种基于KPCA方法的集成轨迹相似度指标,以解决多个指标之间的相干性问题;随后采用AP聚类分析方法检测同步发电机之间的相干性,可无需预先指定聚类的数量;利用高可再生能源发电渗透率的华南电力系统和包括张北风电场的华北电力系统的一部分进行仿真分析,结果证明了所提方法的适用性和实用性。