In this study, an F2 segregated population obtained by hybridization between the aphid-sensitive sorghum strain Qiansan and aphid-resistant cultivar Henong 16 was used to establish an aphid-resistant pool and an aphid...In this study, an F2 segregated population obtained by hybridization between the aphid-sensitive sorghum strain Qiansan and aphid-resistant cultivar Henong 16 was used to establish an aphid-resistant pool and an aphid-sensitive pool. 192 pairs of AFLP (amplified fragment length polymorphism) marker primers were screened in these pools using BSA (bulked segregant analysis). Three pairs of EcoR I-CTG/Mse I-CCT, EcoR I-CTG/Mse I-CAT, and EcoR I-AGT/Mse I-CCC showed linkage with aphis resistance. EcoR I-CTG/Mse I-CCT-475, EcoR I-CTG/Mse I-CAT-390, and EcoR I-AGT/Mse I-CCC- 350 (E42/M52-350) were mapped within 6, 10, and 13 cM distances with the aphid-resistant gene by using Mapmaker 3.0 software. The bands amplified by EcoR I-CTG/Mse I-CCT-475 and EcoR I-CTG/Mse I-CAT-390 were extracted, cloned, and sequenced. Specific primers of SCAR (sequence characterized amplified regions) were then designed from these bands. A specific band of 300 bp was amplified by a pair of SCAR primers designed based on the sequence obtained from the EcoR I-CTG/Mse I-CAT-390 marker. The SCAR marker was named SCAS0. The marker was used to detect the F2, BC1, and F2:3 populations. The selective efficiency was 86.8, 91.1, and 86.3% in the BC1, F2, and F2:3 populations, respectively. The average selective efficiency was 88.2%.展开更多
Four soybean [Glycine max (L.) Merr.] cultivars with soybean aphid resistance (Aphis glycines Matsmura), p189, P203, P574, and P746, were identified in field test, choice test, and non-choice test, The grade of re...Four soybean [Glycine max (L.) Merr.] cultivars with soybean aphid resistance (Aphis glycines Matsmura), p189, P203, P574, and P746, were identified in field test, choice test, and non-choice test, The grade of resistance to aphids and the damage index of P189, P203, and P746 were significantly different from the susceptible cultivars (P=0.05). P574 and P746 showed antibiosis resistance, preventing aphids from reproducing on the plants. P203 showed antixenosis resistance, preventing aphids from reproducing in field test and choice test, but susceptible in non-choice test. Population development on plants was significantly different in field test, choice test, and non-choice test, which was caused by different selective pressures.展开更多
The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and...The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and is an important tool that has been utilized in evaluating Medicago sativa(alfalfa) cultivar resistance to aphids. However, assessment of alfalfa resistance to aphids can be confused by the presence of aphid predators, causing the assessment of plant resistance to aphids to be based on incorrect aphid population data. To refine the AQR and account for the effect of predators on aphid population assessments, we introduced a parameter ‘α', corresponding to the predator quantity ratio, and used αAQR as the ratio to quantify aphid populations. Populations of both aphids(4 species) and their predators(12 species) occurring in 28 M. sativa cultivars were sampled over two years at a research station near Cangzhou, Hebei Province, China. Results showed that the most suitable evaluation period was from May to June, as the aphid population was stable during this period. Compared with the AQR method, the predator population numbers based on the αAQR had a significant inverse relationship with aphid population numbers and the 28 cultivars were clustered into three classes: the resistant class, tolerant class, and susceptible class. In addition, 17 cultivars were reassigned when evaluated using αAQR. All numerical values calculated by αAQR were displayed as a Gaussian distribution, which showed that the 28 cultivars could be clustered into nine groups using a median value(±SE) of 1±0.1. Hence, ongoing alfalfa breeding trials will be assessed using the αAQR to establish a robust system that includes agronomic performance parameters in order to generalize the new method for further studies.展开更多
Lignin is one of the main components of cell walls and is essential for resistance to insect pests in plants.Cotton plants are damaged by aphid(Aphis gossypii) worldwide but resistant breeding is undeveloped due to sc...Lignin is one of the main components of cell walls and is essential for resistance to insect pests in plants.Cotton plants are damaged by aphid(Aphis gossypii) worldwide but resistant breeding is undeveloped due to scarce knowledge on resistance genes and the mechanism. This study reported a lignin biosynthesisrelated gene identified in the F_(2) population derived from the cross between cotton cultivars Xinluzao 61(resistant to aphid) and Xinluzao 50(susceptible to aphid). A quantitative trait locus was mapped on chromosome D04 with a logarithm of odds(LOD) score of 5.99 and phenotypic effect of 27%. RNA-seq analysis of candidate intervals showed that the expression level of GH_D04G1418 was higher in the resistant cultivar than in the susceptible cultivar. This locus is close to AtLAC4 in the phylogenetic tree and contains a conserved laccase domain. Hence, it was designated GhLAC4-3. Silencing of GhLAC4-3 in Xinluzao 61 via virus-induced gene silencing(VIGS) resulted in decreased lignin content and increased susceptibility to aphids. These results suggest that GhLAC4-3 might enhance aphid resistance by regulating lignin biosynthesis in cotton.展开更多
<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i>&l...<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i></span><span style="font-family:""><span style="font-family:Verdana;"> Passerini (Hemiptera: Aphididae) is a pest of cereals in many regions of the world and was identified as an invasive pest of the US in 2007. Regional surveys from 2015-2017 revealed this pest was broadly distributed throughout many of the western Great Plains states where it is a potential threat to cereal production. The common name hedgehog grain aphid, HGA, has been associated with </span><i><span style="font-family:Verdana;">Sipha</span></i> <i><span style="font-family:Verdana;">maydis</span></i><span style="font-family:Verdana;"> in the US. Cross-resistance where a plant is resistant to one aphid species and is also resistant to another species</span></span><span style="font-family:Verdana;"> that</span><span style="font-family:""><span style="font-family:Verdana;"> is known to occur. Six barleys were evaluated for cross-resistance to HGA: Russian wheat aphid, RWA, resistant germplasms STARS 9301B and STARS 9577B and cultivar “Mesa”;greenbug, GB, resistant germplasm STARS 1501B and cultivar “Post 90”;and RWA and GB resistant experimental line 00BX 11-115. Cultivars “Morex” and “Schuyler” were susceptible controls. Antixenosis was measured 5 days after infestation by HGA. Seedling damage ratings and reductions in seedling growth were recorded after 17 days of infestation. Intrinsic rate of increase, </span><i><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;">, of HGA was determined by following the development of newborn aphids to adulthood and reproduction. 00BX 11-115 and Post 90 had significantly greater antixenosis (fewer aphids/seedling), significantly lower plant damage ratings, and significantly lower intrinsic rates of increase than other entries. Differences in seedling growth were not significant. 00BX 11-115 and Post 90 were the only entries with the </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance gene. </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance confers cross-resistance to HGA in the seedling stage.</span></span><span style="font-family:Verdana;"></span> </div>展开更多
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most destructive insect pests on soybeans in the United States. One method for managing this pest is through host plant resistance. ...The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most destructive insect pests on soybeans in the United States. One method for managing this pest is through host plant resistance. Since its arrival in 2000, 4 aphid biotypes have been identified that are able to overcome soybean aphid resistance (Rag) genes. A soybean aphid isolate collected from Moline, Illinois readily colonized soybean plants with the soybean aphid resistance gene Rag2, unlike biotypes 1 and 2, but similar to soybean aphid biotype 3. Two no-choice experiments compared the virulence of the Moline isolate with biotype 3. In both experiments, differences in aphid population counts were not significant (P 〉 0.05) on soybean genotypes LD08-12957a (Rag2) and LD11-5413a (Rag2), but the aphid counts for the Moline isolate were significantly (P 〈 0.05) lower than the aphid counts for the biotype 3 isolate on the soybean genotypes Dowling (Rag1), LD05-16611 (Rag1), LD11-4576a (Rag1), and P1567598B (raglb and rag3). The Moline isolate was a variant of aphid biotype 3, which is the first report showing that soybean aphid isolates classified as the same biotype, based on virulence against specific Rag genes, can differ in aggressiveness or ability to colonize specific host genotypes.展开更多
Wild species of domesticated crops provide valuable genetic resources for resistance breeding.Prunus davidiana,a wild relative of peach with high heterozygosity and diverse stress tolerance,exhibits high resistance ag...Wild species of domesticated crops provide valuable genetic resources for resistance breeding.Prunus davidiana,a wild relative of peach with high heterozygosity and diverse stress tolerance,exhibits high resistance against aphids.However,the highly heterozygous genome of P.davidiana makes determining the underlying factors influencing resistance traits challenging.Here,we present the 501.7 Mb haplotype-resolved genome assembly of P.davidiana.Genomic comparisons of the two haplotypes revealed 18,152 structural variations,2,699 Pda_hap1-specific and 2,702 Pda_hap2-specific genes,and 1,118 allele-specific expressed genes.Genome composition indicated 4.1%of the P.davidiana genome was non-peach origin,out of which 94.5%was derived from almond.Based on the haplotype genome,the aphid resistance quantitative trait locus(QTL)was mapped at the end of Pda03.From the aphid resistance QTL,PdaWRKY4 was identified as the major dominant gene,with a 9-bp deletion in its promoter of the resistant phenotype.Specifically,PdaWRKY4 regulates aphid resistance by promoting PdaCYP716A1-mediated anti-aphid metabolite betulin biosynthesis.Moreover,we employed a genome design to develop a breeding workflow for rapidly and precisely producing aphid-resistant peaches.In conclusion,this study identifies a novel aphid resistance gene and provides insights into genome design for the development of resistant fruit cultivars.展开更多
基金the Natural Science Foundation, Hebei Province, China (C2010000758)the Science and Technology Department of Hebei Province,China (06547004D-2)
文摘In this study, an F2 segregated population obtained by hybridization between the aphid-sensitive sorghum strain Qiansan and aphid-resistant cultivar Henong 16 was used to establish an aphid-resistant pool and an aphid-sensitive pool. 192 pairs of AFLP (amplified fragment length polymorphism) marker primers were screened in these pools using BSA (bulked segregant analysis). Three pairs of EcoR I-CTG/Mse I-CCT, EcoR I-CTG/Mse I-CAT, and EcoR I-AGT/Mse I-CCC showed linkage with aphis resistance. EcoR I-CTG/Mse I-CCT-475, EcoR I-CTG/Mse I-CAT-390, and EcoR I-AGT/Mse I-CCC- 350 (E42/M52-350) were mapped within 6, 10, and 13 cM distances with the aphid-resistant gene by using Mapmaker 3.0 software. The bands amplified by EcoR I-CTG/Mse I-CCT-475 and EcoR I-CTG/Mse I-CAT-390 were extracted, cloned, and sequenced. Specific primers of SCAR (sequence characterized amplified regions) were then designed from these bands. A specific band of 300 bp was amplified by a pair of SCAR primers designed based on the sequence obtained from the EcoR I-CTG/Mse I-CAT-390 marker. The SCAR marker was named SCAS0. The marker was used to detect the F2, BC1, and F2:3 populations. The selective efficiency was 86.8, 91.1, and 86.3% in the BC1, F2, and F2:3 populations, respectively. The average selective efficiency was 88.2%.
基金supported by the National Natural Science Foundation of China(30871549)the Key Basic Research of Shanghai Committee of Science and Technology,China(08JC1410500)
文摘Four soybean [Glycine max (L.) Merr.] cultivars with soybean aphid resistance (Aphis glycines Matsmura), p189, P203, P574, and P746, were identified in field test, choice test, and non-choice test, The grade of resistance to aphids and the damage index of P189, P203, and P746 were significantly different from the susceptible cultivars (P=0.05). P574 and P746 showed antibiosis resistance, preventing aphids from reproducing on the plants. P203 showed antixenosis resistance, preventing aphids from reproducing in field test and choice test, but susceptible in non-choice test. Population development on plants was significantly different in field test, choice test, and non-choice test, which was caused by different selective pressures.
基金funded by the earmarked fund for China Agriculture Research System (CARS-34-07)the National Department of Public Benefit Research Foundation, China (201303057)
文摘The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and is an important tool that has been utilized in evaluating Medicago sativa(alfalfa) cultivar resistance to aphids. However, assessment of alfalfa resistance to aphids can be confused by the presence of aphid predators, causing the assessment of plant resistance to aphids to be based on incorrect aphid population data. To refine the AQR and account for the effect of predators on aphid population assessments, we introduced a parameter ‘α', corresponding to the predator quantity ratio, and used αAQR as the ratio to quantify aphid populations. Populations of both aphids(4 species) and their predators(12 species) occurring in 28 M. sativa cultivars were sampled over two years at a research station near Cangzhou, Hebei Province, China. Results showed that the most suitable evaluation period was from May to June, as the aphid population was stable during this period. Compared with the AQR method, the predator population numbers based on the αAQR had a significant inverse relationship with aphid population numbers and the 28 cultivars were clustered into three classes: the resistant class, tolerant class, and susceptible class. In addition, 17 cultivars were reassigned when evaluated using αAQR. All numerical values calculated by αAQR were displayed as a Gaussian distribution, which showed that the 28 cultivars could be clustered into nine groups using a median value(±SE) of 1±0.1. Hence, ongoing alfalfa breeding trials will be assessed using the αAQR to establish a robust system that includes agronomic performance parameters in order to generalize the new method for further studies.
基金supported by the Corps Science and Technology Innovation Talent Plan (2021CB028)the Shihezi Science and Technology Research Key Field Science and Technology Research Project (2022NY01)+1 种基金the Fifth Division Science and Technology Plan Project (2021NY02)the Young and Middle-aged Leading Talent Plan (2020CB017)。
文摘Lignin is one of the main components of cell walls and is essential for resistance to insect pests in plants.Cotton plants are damaged by aphid(Aphis gossypii) worldwide but resistant breeding is undeveloped due to scarce knowledge on resistance genes and the mechanism. This study reported a lignin biosynthesisrelated gene identified in the F_(2) population derived from the cross between cotton cultivars Xinluzao 61(resistant to aphid) and Xinluzao 50(susceptible to aphid). A quantitative trait locus was mapped on chromosome D04 with a logarithm of odds(LOD) score of 5.99 and phenotypic effect of 27%. RNA-seq analysis of candidate intervals showed that the expression level of GH_D04G1418 was higher in the resistant cultivar than in the susceptible cultivar. This locus is close to AtLAC4 in the phylogenetic tree and contains a conserved laccase domain. Hence, it was designated GhLAC4-3. Silencing of GhLAC4-3 in Xinluzao 61 via virus-induced gene silencing(VIGS) resulted in decreased lignin content and increased susceptibility to aphids. These results suggest that GhLAC4-3 might enhance aphid resistance by regulating lignin biosynthesis in cotton.
文摘<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i></span><span style="font-family:""><span style="font-family:Verdana;"> Passerini (Hemiptera: Aphididae) is a pest of cereals in many regions of the world and was identified as an invasive pest of the US in 2007. Regional surveys from 2015-2017 revealed this pest was broadly distributed throughout many of the western Great Plains states where it is a potential threat to cereal production. The common name hedgehog grain aphid, HGA, has been associated with </span><i><span style="font-family:Verdana;">Sipha</span></i> <i><span style="font-family:Verdana;">maydis</span></i><span style="font-family:Verdana;"> in the US. Cross-resistance where a plant is resistant to one aphid species and is also resistant to another species</span></span><span style="font-family:Verdana;"> that</span><span style="font-family:""><span style="font-family:Verdana;"> is known to occur. Six barleys were evaluated for cross-resistance to HGA: Russian wheat aphid, RWA, resistant germplasms STARS 9301B and STARS 9577B and cultivar “Mesa”;greenbug, GB, resistant germplasm STARS 1501B and cultivar “Post 90”;and RWA and GB resistant experimental line 00BX 11-115. Cultivars “Morex” and “Schuyler” were susceptible controls. Antixenosis was measured 5 days after infestation by HGA. Seedling damage ratings and reductions in seedling growth were recorded after 17 days of infestation. Intrinsic rate of increase, </span><i><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;">, of HGA was determined by following the development of newborn aphids to adulthood and reproduction. 00BX 11-115 and Post 90 had significantly greater antixenosis (fewer aphids/seedling), significantly lower plant damage ratings, and significantly lower intrinsic rates of increase than other entries. Differences in seedling growth were not significant. 00BX 11-115 and Post 90 were the only entries with the </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance gene. </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance confers cross-resistance to HGA in the seedling stage.</span></span><span style="font-family:Verdana;"></span> </div>
文摘The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most destructive insect pests on soybeans in the United States. One method for managing this pest is through host plant resistance. Since its arrival in 2000, 4 aphid biotypes have been identified that are able to overcome soybean aphid resistance (Rag) genes. A soybean aphid isolate collected from Moline, Illinois readily colonized soybean plants with the soybean aphid resistance gene Rag2, unlike biotypes 1 and 2, but similar to soybean aphid biotype 3. Two no-choice experiments compared the virulence of the Moline isolate with biotype 3. In both experiments, differences in aphid population counts were not significant (P 〉 0.05) on soybean genotypes LD08-12957a (Rag2) and LD11-5413a (Rag2), but the aphid counts for the Moline isolate were significantly (P 〈 0.05) lower than the aphid counts for the biotype 3 isolate on the soybean genotypes Dowling (Rag1), LD05-16611 (Rag1), LD11-4576a (Rag1), and P1567598B (raglb and rag3). The Moline isolate was a variant of aphid biotype 3, which is the first report showing that soybean aphid isolates classified as the same biotype, based on virulence against specific Rag genes, can differ in aggressiveness or ability to colonize specific host genotypes.
基金supported by the National Key Research and Development Program(2023YFE0105400)Central Public-interest Scientific Institution Basal Research Fund(Y2022QC23)+4 种基金the Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2023-ZFRI-01)Natural Science Foundation of Henan(232300421042)the Crop Germplasm Resources Conservation Project(2016NWB041)the National Natural Science Foundation of China(32402492)the National Key Research and Development Program(2019YFD1000200).
文摘Wild species of domesticated crops provide valuable genetic resources for resistance breeding.Prunus davidiana,a wild relative of peach with high heterozygosity and diverse stress tolerance,exhibits high resistance against aphids.However,the highly heterozygous genome of P.davidiana makes determining the underlying factors influencing resistance traits challenging.Here,we present the 501.7 Mb haplotype-resolved genome assembly of P.davidiana.Genomic comparisons of the two haplotypes revealed 18,152 structural variations,2,699 Pda_hap1-specific and 2,702 Pda_hap2-specific genes,and 1,118 allele-specific expressed genes.Genome composition indicated 4.1%of the P.davidiana genome was non-peach origin,out of which 94.5%was derived from almond.Based on the haplotype genome,the aphid resistance quantitative trait locus(QTL)was mapped at the end of Pda03.From the aphid resistance QTL,PdaWRKY4 was identified as the major dominant gene,with a 9-bp deletion in its promoter of the resistant phenotype.Specifically,PdaWRKY4 regulates aphid resistance by promoting PdaCYP716A1-mediated anti-aphid metabolite betulin biosynthesis.Moreover,we employed a genome design to develop a breeding workflow for rapidly and precisely producing aphid-resistant peaches.In conclusion,this study identifies a novel aphid resistance gene and provides insights into genome design for the development of resistant fruit cultivars.