期刊文献+
共找到37,100篇文章
< 1 2 250 >
每页显示 20 50 100
Xihuang Pill(西黄丸) Induces Mesenchymal-Epithelial Transition and Inhibits Loss of Apical-Basal Polarity in Colorectal Cancer Cell through Regulating ZEB1-SCRIB Loop 被引量:21
1
作者 王邈 孟静岩 何俗非 《Chinese Journal of Integrative Medicine》 SCIE CAS 2014年第10期751-757,共7页
Objective:To investigate the antiproliferative and anti-metastasis effect of Xihuang Pill(西黄丸,XP) on human colorectal cancer cell and to explore the molecular mechanism by which it produces the effects.Methods:... Objective:To investigate the antiproliferative and anti-metastasis effect of Xihuang Pill(西黄丸,XP) on human colorectal cancer cell and to explore the molecular mechanism by which it produces the effects.Methods:Highly metastatic human colorectal cancer cell line LoVo was treated with low-,medium-,and highdose XP-containing serum(XP-L,XP-M,XP-H) groups for 48 h,cells intervened with no drug rat serum and PD98059[extracellular signal-regulated kinase(ERK) inhibitor]as negative and positive controls(NC and PC)groups.Cell proliferation assay was made using cell counting kit-8(CCK8).The 8 μm pore-size transwell chamber and 4',6-diamidino-2-phenylindole(DAPI) staining were applied to examine the ability of invasion and migration of the cells.The protein expression of ERK1/2,zinc finger E-box-binding homeobox 1(ZEB1),Scrib and lethal giant larvae homolog 2(Lgl2) was detected by Western blotting while the relative mRNA quantity of E-cadherin,N-cadherin,Occludin and junctional adhesion molecule-1(JAM1) was measured by realtime fluorescent quantitative polymerase chain reaction(RT-qPCR).Results:XP induced a dose-dependent suppression on the proliferation of LoVo cells(P〈0.05 or P〈0.01),with the inhibition rates varied from 27.30%to31.08%.Transwell assay showed that when preprocessed with PD98059 and XP-containing serum,the number of cells that passed the filter decreased significantly compared with that of NC group(P〈0.05 or P〈0.01).Moreover,XP inhibited the protein expression of ERK1/2 and ZEB1(P〈0.05);and up-regulated the protein expression of Scrib and Lgl2(P〈0.05).The mRNA levels of E-cadherin,Occludin and JAM1 of the XP intervened groups and PC group markedly ascended(P〈0.05) while that of N-cadherin showed a descending tendency(P〉0.05).Conclusion:XP intervention suppressed the ability of proliferation,invasion and migration of the LoVo cells.Regulating ZEB1-SCRIB Loop so as to recover epithelial phenotype and apical junctional complex might be one of the mechanisms by which XP produces the anti-metastasis effect. 展开更多
关键词 Xihuang Pill ANTI-METASTASIS epithelial-mesenchymal transition apical-basal polarity colorectal cancer
原文传递
SPT6L Encoding a Putative WG/GW-Repeat Protein Regulates Apical-Basal Polarity of Embryo in Arabidopsis 被引量:1
2
作者 Xiao-Lu Gu Hua Wang +1 位作者 Hai Huang Xiao-Feng Cui 《Molecular Plant》 SCIE CAS CSCD 2012年第1期249-259,共11页
In eukaryotes, a protein motif consisting of WG/GW repeats, also called the Argonaute (AGO) hook, is thought to be essential for binding AGO proteins to fulfill their functions in RNA-mediated gene silencing. Althou... In eukaryotes, a protein motif consisting of WG/GW repeats, also called the Argonaute (AGO) hook, is thought to be essential for binding AGO proteins to fulfill their functions in RNA-mediated gene silencing. Although a number of WG/GW-containing proteins have been computationally identified in Arabidopsis, their roles in plant growth and development are unknown. Here, we show that the Arabidopsis Suppressor of Ty insertion 6-like (SPT6L) gene, which encodes a protein with C-terminal WG/GW repeats, plays critical roles in embryonic development. SPT6L is evolutionarily conserved only in vascular plants, with varying numbers of C-terminal WG/GW repeats, which are plant-species specific. spt61 mutants formed embryos with an aberrant apical-basal axis, showing insufficient development of the basal domain and embryonic lethality. Expression domains of the class-Ill homeodomain-leucine zipper (HD-ZIP III) genes PHABULOSA (PHB) and PHAVOLUTA (PHV) were expanded in the spt61 embryo. In contrast, the PLETHORA1 (PLT1) gene, which acts antagonistically to the HD-ZIP III genes in specification of basal fate, was severely down-regulated in the spt61 mutant. Furthermore, the phb phv double mutations partially rescued aberrant basal development in the spt61 background and restored PLT1 expression. Collectively, our results indicate that SPT6L is essential for specification of the apical-basal axis, partly by controlling the HD-ZIP III genes in embryos. 展开更多
关键词 ARABIDOPSIS EMBRYO HD-ZIP ill polarity SPT6L.
原文传递
Polarity-controllable magnetic skyrmion filter
3
作者 Xiao-Lin Ai Hui-Ting Li +4 位作者 Xue-Feng Zhang Chang-Feng Li Je-Ho Shim Xiao-Ping Ma Hong-Guang Piao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期400-404,共5页
The skyrmion generator is one of the indispensable components for the future functional skyrmion devices,but the process of generating skyrmion cannot avoid mixing with other magnetic textures,such as skyrmionium and ... The skyrmion generator is one of the indispensable components for the future functional skyrmion devices,but the process of generating skyrmion cannot avoid mixing with other magnetic textures,such as skyrmionium and nested skyrmion bags.These mixed magnetic textures will inevitably lead to the blockage of skyrmion transport and even the distortion of data information.Therefore,the design of an efficient skyrmion filter is of great significance for the development of skyrmion-based spintronic devices.In this work,a skyrmion filter scheme is proposed,and the high-efficiency filtering function is demonstrated by micromagnetic simulations.The results show that the filtering effect of the scheme depends on the structure geometry and the spin current density that drives the skyrmion.Based on this scheme,the polarity of the filtered skyrmion can be controlled by switching the magnetization state at the output end,and the“cloning”of the skyrmion can be realized by geometric optimization of the structure.We believe that in the near future,the skyrmion filter will become one of the important components of skyrmion-based spintronic devices in the future. 展开更多
关键词 SPINTRONICS SKYRMIONS skyrmion filter skyrmion polarity skyrmion clone
下载PDF
Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes
4
作者 Nuo Xu Gaoqiang Deng +6 位作者 Haotian Ma Shixu Yang Yunfei Niu Jiaqi Yu Yusen Wang Jingkai Zhao Yuantao Zhang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期48-55,共8页
A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density ... A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density and mobility are mini-mally affected by device scaling.However,the Schottky barrier height(SBH)of N-polarity GaN is low.This leads to a large gate leakage in N-polarity GaN-based HEMTs.In this work,we investigate the effect of annealing on the electrical characteristics of N-polarity GaN-based Schottky barrier diodes(SBDs)with Ni/Au electrodes.Our results show that the annealing time and tem-perature have a large influence on the electrical properties of N-polarity GaN SBDs.Compared to the N-polarity SBD without annealing,the SBH and rectification ratio at±5 V of the SBD are increased from 0.51 eV and 30 to 0.77 eV and 7700,respec-tively,and the ideal factor of the SBD is decreased from 1.66 to 1.54 after an optimized annealing process.Our analysis results suggest that the improvement of the electrical properties of SBDs after annealing is mainly due to the reduction of the inter-face state density between Schottky contact metals and N-polarity GaN and the increase of barrier height for the electron emis-sion from the trap state at low reverse bias. 展开更多
关键词 nitrogen polarity GAN Schottky barrier diodes ANNEALING interface state
下载PDF
Gene expression,transcription factor binding and histone modification predict leaf adaxial-abaxial polarity related genes
5
作者 Wei Sun Zhicheng Zhang +2 位作者 Guusje Bonnema Xiaowu Wang Aalt Dirk Jan van Dijk 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期971-982,共12页
Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we... Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we applied a combination of in silico prediction using machine learning(ML)and experimental analysis.A Random Forest model was trained using genes known to influence ad-abaxial polarity as ground truth.Gene expression data from various tissues and conditions as well as promoter regulation data derived from transcription factor chromatin immunoprecipitation sequencing(ChIP-seq)was used as input,enabling the prediction of novel ad-abaxial polarity-related genes and additional transcription factors.Parallel to this,available and newly-obtained transcriptome data enabled us to identify genes differentially expressed across leaf ad-abaxial sides.Based on these analyses,we obtained a set of 111 novel genes which are involved in leaf ad-abaxial specialization.To explore implications for vegetable crop breeding,we examined the conservation of expression patterns between Arabidopsis and Brassica rapa using single-cell transcriptomics.The results demonstrated the utility of our computational approach for predicting candidate genes in crop species.Our findings expand the understanding of the genetic networks governing leaf ad-abaxial differentiation in agriculturally important vegetables,enhancing comprehension of natural variation impacting leaf morphology and development,with demonstrable breeding applications. 展开更多
关键词 Machine learning Leaf polarity Arabidopsis thaliana Brassica rapa Transcription factor
下载PDF
Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries
6
作者 Yongchao Kang Feng Zhang +6 位作者 Houzhen Li Wangran Wei Huitong Dong Hao Chen Yuanhua Sang Hong Liu Shuhua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期104-113,共10页
Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf... Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries. 展开更多
关键词 aqueous zinc-ion batteries high performance inner solvation structure low polarity co-solvent low-temperature electrolyte
下载PDF
Cell polarization in ischemic stroke: molecular mechanisms and advances
7
作者 Yuanwei Li Xiaoxiao Xu +5 位作者 Xuan Wu Jiarui Li Shiling Chen Danyang Chen Gaigai Li Zhouping Tang 《Neural Regeneration Research》 SCIE CAS 2025年第3期632-645,共14页
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu... Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke. 展开更多
关键词 astrocyte polarization immune regulation inflammation ischemic injury microglia polarization neutrophil polarization signaling pathways STROKE
下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
8
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides polarization coupling Electromagnetic wave absorption
下载PDF
Integration of Electrical Properties and Polarization Loss Modulation on Atomic Fe–N‑RGO for Boosting Electromagnetic Wave Absorption
9
作者 Kaili Zhang Yuefeng Yan +4 位作者 Zhen Wang Guansheng Ma Dechang Jia Xiaoxiao Huang Yu Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期517-532,共16页
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ... Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism. 展开更多
关键词 Electromagnetic wave absorption Fe-N-RGO Dipole polarization Conduction loss Impedance matching
下载PDF
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
10
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers Tactile perception Machine learning algorithm Object recognition
下载PDF
High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury
11
作者 Mengshi Yang Miao Bai +10 位作者 Yuan Zhuang Shenghua Lu Qianqian Ge Hao Li Yu Deng Hongbin Wu Xiaojian Xu Fei Niu Xinlong Dong Bin Zhang Baiyun Liu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2611-2623,共13页
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i... Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway. 展开更多
关键词 apoptosis BV2 microglia DEXAMETHASONE glucocorticoid receptor GLUCOCORTICOIDS innate immune system microglial polarization neuroinflammation primary microglia traumatic brain injury
下载PDF
Pharmacological targeting cGAS/STING/NF-κB axis by tryptanthrin induces microglia polarization toward M2 phenotype and promotes functional recovery in a mouse model of spinal cord injury
12
作者 Ziwei Fan Mengxian Jia +16 位作者 Jian Zhou Zhoule Zhu Yumin Wu Xiaowu Lin Yiming Qian Jiashu Lian Xin Hua Jianhong Dong Zheyu Fang Yuqing Liu Sibing Chen Xiumin Xue Juanqing Yue Minyu Zhu Ying Wang Zhihui Huang Honglin Teng 《Neural Regeneration Research》 SCIE CAS 2025年第11期3287-3301,共15页
The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia ... The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype. 展开更多
关键词 cGAS/STING functional recovery MICROGLIA neuroinflammation neuroprotection nuclear factor-κB polarIZATION spinal cord injury TRYPTANTHRIN
下载PDF
Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke
13
作者 Shuai Feng Juanji Li +6 位作者 Tingting Liu Shiqi Huang Xiangliang Chen Shen Liu Junshan Zhou Hongdong Zhao Ye Hong 《Neural Regeneration Research》 SCIE CAS 2025年第2期491-502,共12页
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit... Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke. 展开更多
关键词 inflammation ischemia/reperfusion injury ischemic stroke low-density lipoprotein receptor neuroprotective astrocytes neurotoxic astrocytes NLRP3 inflammasome polarIZATION
下载PDF
Inhibiting SHP2 reduces glycolysis, promotes microglial M1 polarization, and alleviates secondary inflammation following spinal cord injury in a mouse model
14
作者 Xintian Ding Chun Chen +6 位作者 Heng Zhao Bin Dai Lei Ye Tao Song Shuai Huang Jia Wang Tao You 《Neural Regeneration Research》 SCIE CAS 2025年第3期858-872,共15页
Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PT... Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury. 展开更多
关键词 apoptosis GLYCOLYSIS inflammatory response MICROGLIA neurons polarIZATION spinal cord injury Src homology 2-containing protein tyrosine phosphatase 2
下载PDF
Design of Serially Concatenated Two-Level Polar Coded Modulation System with Low-Complexity
15
作者 Zhou Lin Liao Guojun +3 位作者 Xu Lei An Ran Xie Xianzhong Wang Xi 《China Communications》 2025年第1期102-110,共9页
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat... Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%. 展开更多
关键词 bit-interleaved coded modulation high-order modulation multilevel coding polar codes
下载PDF
Macrophage polarization in cardiac transplantation:Insights into immune modulation and therapeutic approaches
16
作者 JINGWEI JIANG BO JIA +5 位作者 CHUAN WANG CHEN FANG YUGUI LI GUOXING LING BAOSHI ZHENG CHENG LUO 《BIOCELL》 2025年第1期61-78,共18页
The role and regulatory mechanisms of macrophage polarization in cardiac transplantation have gained significant attention.Macrophages can polarize into either the M1(pro-inflammatory)or M2(anti-inflammatory)phenotype... The role and regulatory mechanisms of macrophage polarization in cardiac transplantation have gained significant attention.Macrophages can polarize into either the M1(pro-inflammatory)or M2(anti-inflammatory)phenotype in response to environmental cues.M1 macrophages facilitate transplant rejection by releasing inflammatory mediators and activating T cells,whereas M2 macrophages support graft survival by secreting antiinflammatory factors and promoting tissue repair.Mitochondrial quality control regulation plays a crucial role in macrophage polarization,which may influence graft survival and immune responses.This review provides an overview of the current understanding of mitochondrial quality control-regulated macrophage polarization in cardiac transplantation,its effects on graft outcomes,and potential therapeutic strategies to modulate this process to enhance transplant success rates.The review was conducted by systematically analyzing recent studies and integrating findings from key research articles to synthesize a comprehensive understanding of this emerging field. 展开更多
关键词 Cardiac transplantation Mitochondrial quality control Macrophage polarization immune tolerance transplant rejection
下载PDF
O-linked β-N-acetylglucosamine transferase regulates macrophage polarization in diabetic periodontitis: In vivo and in vitro study
17
作者 Ye-Ke Wu Min Liu +6 位作者 Hong-Ling Zhou Xiang He Jing Wei Wei-Han Hua Hui-Jing Li Qiang-Hua Yuan Yun-Fei Xie 《World Journal of Diabetes》 2025年第3期167-186,共20页
BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transf... BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transferase(OGT),promotes inflammatory responses in diabetic periodontitis(DP).Additionally,p38 mitogen-activated protein kinase regulates macrophage polarization.However,the interplay between OGT,macrophage polarization,and p38 signaling in the progression of DP remains unexplored.AIM To investigate the effect of OGT on macrophage polarization in DP and its role in mediating O-GlcNAcylation of p38.METHODS For in vivo experiments,mice were divided into four groups:Control,DP model,model+short hairpin(sh)RNAnegative control,and model+sh-OGT.Diabetes was induced by streptozotocin,followed by ligation and lipopolysaccharide(LPS)administration to induce periodontitis.The impact of OGT was assessed by injecting sh-OGT lentivirus.Maxillary bone destruction was evaluated using micro-computed tomography analysis and tartrateresistant acid phosphatase staining,while macrophage polarization was determined through quantitative real-time polymerase chain reaction(qPCR)and immunohistochemistry.For in vitro experiments,RAW264.7 cells were treated with LPS and high glucose(HG)(25 mmol/L D-glucose)to establish a cell model of DP.OGT was inhibited by OGT inhibitor(OSMI4)treatment and knocked down by sh-OGT transfection.M1/M2 polarization was analyzed using qPCR,immunofluorescence,and flow cytometry.Levels of O-GlcNAcylation were measured using immunoprecipitation and western blotting.RESULTS Our results demonstrated that M1 macrophage polarization led to maxillary bone loss in DP mice,associated with elevated O-GlcNAcylation and OGT levels.Knockdown of OGT promoted the shift from M1 to M2 macrophage polarization in both mouse periodontal tissues and LPS+HG-induced RAW264.7 cells.Furthermore,LPS+HG enhanced the O-GlcNAcylation of p38 in RAW264.7 cells.OGT interacted with p38 to promote its O-GlcNAcylation at residues A28,T241,and T347,as well as its phosphorylation at residue Y221.CONCLUSION Inhibition of OGT-mediated p38 O-GlcNAcylation deactivates the p38 pathway by suppressing its self-phosphorylation,thereby promoting M1 to M2 macrophage polarization and mitigating DP.These findings suggested that modulating macrophage polarization through regulation of O-GlcNAcylation may represent a novel therapeutic strategy for treating DP. 展开更多
关键词 Diabetic periodontitis Macrophage polarization O-linkedβ-N-acetylglucosamine O-linkedβ-N-acetylglucosamine transferase P38
下载PDF
Dapagliflozin exerts anti-apoptotic effects by mitigating macrophage polarization via modulation of the phosphoinositide 3-kinase/protein kinase B signaling pathway
18
作者 Sheng-Xi Xiong Lin-Juan Huang +5 位作者 Han-Shuang Liu Xiao-Xiao Zhang Min Li Yu-Bing Cui Chen Shao Xiao-Lei Hu 《World Journal of Diabetes》 2025年第2期163-174,共12页
BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes criti... BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway. 展开更多
关键词 DAPAGLIFLOZIN Macrophage polarization INFLAMMATION Macrophage apoptosis Phosphoinositide 3-kinase/protein kinase B signaling pathway
下载PDF
Low Power Polarity Conversion Based on the Whole Annealing Genetic Algorithm 被引量:4
19
作者 汪鹏君 陆金刚 +1 位作者 陈恳 徐建 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第2期298-303,共6页
For an n-variable logic function,the power dissipation and area of the REED-MULLER (RM) circuit corresponding to each polarity are different. Based on the propagation algorithm of signal probability,the decompositio... For an n-variable logic function,the power dissipation and area of the REED-MULLER (RM) circuit corresponding to each polarity are different. Based on the propagation algorithm of signal probability,the decomposition algorithm of a multi-input XOR/AND gate,and the multiple segment algorithm of polarity conversion,this paper successfully applies the whole annealing genetic algorithm (WAGA) to find the best polarity of an RM circuit. Through testing eight large-scale circuits from the Microelectronics Center North Carolina (MCNC) Benchmark, the SYNOPSYS synthesis results show that the RM circuits corresponding to the best polarity found using the proposed algorithm attain average power,area,and max delay savings of 77.2% ,62.4% ,and 9.2% respectively,compared with those under polarity 0. 展开更多
关键词 whole annealing genetic algorithm REED-MULLER low power polarity conversion
下载PDF
Determination of Structure and Polarity of Si C Single Crystal by X-Ray Diffraction Technique 被引量:1
20
作者 郑新和 渠波 +2 位作者 王玉田 杨辉 梁骏吾 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2001年第1期35-39,共5页
Structure and polarity of the Si C single crystal have been analyzed with the four- circle X- ray diffraction method by a double- crystal diffractom eter.The hexagonal{ 10 15 } pole figure shows that this Si C sam pl... Structure and polarity of the Si C single crystal have been analyzed with the four- circle X- ray diffraction method by a double- crystal diffractom eter.The hexagonal{ 10 15 } pole figure shows that this Si C sam ple has a6 H modification.The difference between the integrated intensities m easured byω scan in the triple- axis diffraction set- up finds some convincing evidence that the surface is either a Si- terminated face or C- terminated face.The experi- mental ratios of| F( 0 0 0 L) | 2 / | F( 0 0 0 L) | 2 are in good agreem entwith the calculated ones after the dispersion cor- rections to the atomic scattering factors( L=6 ,12 and18,respectively) .Thus,this m easurem ent technique is con- venient for the application of the materials with remarkable surface polarity. 展开更多
关键词 Si C single crystal polarity hexagonal6 H scattering factor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部