To evaluate genetic relationships using qualitative and/or quantitative differentiation of volatile components in Xinjiang Wild Apple (Malus sieversii (Lebed.) Roem.) and to acquire basic data for the conservation...To evaluate genetic relationships using qualitative and/or quantitative differentiation of volatile components in Xinjiang Wild Apple (Malus sieversii (Lebed.) Roem.) and to acquire basic data for the conservation and utilization of the species, aroma components in ripe fruit of M. sieversii obtained from 30 seedlings at Mohe, Gongliu County, Xinjiang Autonomic Region, China, and in ripe fruit of 4 M. purnila cultivars ('Rails', 'Delicious', 'Golden Delicious', and 'Fuji') were analyzed using head space-solid phase microextraction and gas chromatography-mass spectrometry. The results indicated that the values of similarity coefficient concerning volatile types between the two species were in accordance with the evolution of M. pumila cultivars (forms), and that M. sieversii seedlings showed considerable genetic variations in these aspects: the total content of volatile components, the classes and contents of each compound classes, the segregation ratio, and content of main components. The results showed significant difference among seedlings and wide genetic diversity within the populations. Comparison of the volatile components in M. sieversii with those in M. pumila cultivars showed that the common compounds whose number were larger than five with the contents over 0.04 mg/L simultaneously between M. sieversii and M. pumila cultivars belonged to esters, alcohols, aldehydes or ketones. This suggests fundamental identity in main volatile components of M. sieversii and M. pumila cultivars. The results above sustained the conclusion "M. sieversii is probably the ancestor ofM. purnila". However, there were 48 compounds present in M. puraila that were not detected in M. sieversii, including 6 character impact components (i.e., propyl acetate, (Z)-3-hexenal, 2-methyl-l-butanol acetate, pentyl acetate, 3-furanmethanol, and benzene acetaldehyde). This suggested that in the domestication of M. pumila, introgression of other apple species, except for M. sieversii, by interspecies hybridization was possible. There were 177 compounds in total belonging to 11 classes detected in 30 M. sieversii seedlings, including esters, alcohols, ketones, aldehydes, acids, benzene ramifications, terpenes, heterocycles, hydrocarbon derivates, acetals, and lactones. Among them, acetals and lactones were not detected in M. pumila cultivars, 90 compounds were unique to M. sieversii, and 7 components (l-butanol, ethyl hutanoate, 1-hexanol, ethyl hexanoate, 3-octen-1-ol, ethyl octanoate, and damascenone) belonged to character impact odors. Thus, the potential of M. sieversii in "utilization conservation" is enormous as a rate germplasm on genetic improvement of M. pumila cultivars.展开更多
This study investigated the effects of six crop rotation combinations on the soil quality of old apple orchard and seedling growth of Malus hupehensis Rehd.(apple rootstock) under pot conditions. The inhibitory effect...This study investigated the effects of six crop rotation combinations on the soil quality of old apple orchard and seedling growth of Malus hupehensis Rehd.(apple rootstock) under pot conditions. The inhibitory effects of crops such as Allium fistulosum, Brassica juncea, and Triticum aestivum on four species of Fusarium were observed and compared in six treatments. These were continuous cropping(CK), fumigation with the methyl bromide(FM), rotating A. fistulosum only(R1), rotating A. fistulosum and T. aestivum(R2), rotating A. fistulosum, B. juncea, and T. aestivum(R3), and fallow(FC) in a year. The results showed that the biomass of Malus hupehensis Rehd. seedlings increased significantly. The root length increased and the root architecture was optimized. The respiration rate of the root system was increased by about 1 time after rotation. The treatments of R1, R2, R3, and FC increased bacterial count by 232.17%, 96.04%, 316.21%, and 60.02%, respectively. However, the fungi were reduced in varying degrees and bacteria/fungi ratio was increased by 5–10 times. The enzyme activities, p H, and organic matter were increased, but soil bulk density was decreased. Phenolic acids such as phloridzin was decreased significantly. The copy number of four Fusarium species declined by 85.59%, 74.94%, 69.68%, and 54.41% after rotating three different crops(R3 treatment). The root volatiles of three plants inhibited mycelial growth and spore germination of four Fusarium species.展开更多
We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis f...We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis for reducing the obstacles associated with apple replant disease(ARD).Isolates were screened using Salkowski colorimetry and screening medium for phloridzin.The isolate of interest(W6)was identified as Ochrobactrum haematophilum based on morphological analysis,physiological and biochemical tests,and 16S rDNA sequencing.In a laboratory experiment,W6 produced auxin and promoted the growth of Arabidopsis thaliana roots,and its degradation rate of 100 mg.L^(-1 )phloridzin was 62.0%.In a pot experiment,W6 significantly reduced the phenolic acid contents of replanted soil,lowered the abundance of the harmful fungus Fusarium solani,and increased soil enzyme activities,thereby improving the micro-ecological environment of replant soil.W6 increased the root antioxidant enzyme activity and leaf photosynthetic pigment content of replanted Malus hupehensis Rehd.seedlings,effectively alleviating the decrease in net photosynthetic rate,transpiration rate and stomatal conductance caused by ARD.In a field experiment,W6 also promoted the growth of replanted apple(the rootstock is M9T337 and the scion is Yanfu 3)saplings.Therefore,W6 can promote apple growth and degrade phenolic acids,and it can be used as an effective treatment for the reduction of ARD.展开更多
Fruit development and ripening is a complex procedure(Malus×domestica Borkh.)and can be caused by various factors such as cell structure,cell wall components,and cell wall hydrolytic enzymes.In our study,we focus...Fruit development and ripening is a complex procedure(Malus×domestica Borkh.)and can be caused by various factors such as cell structure,cell wall components,and cell wall hydrolytic enzymes.In our study,we focused on the variations in fruit firmness,cell wall morphology and components,the activity of cell wall hydrolytic enzymes and the expression patterns of associated genes during fruit development in two different types of apple cultivars,the hard-crisp cultivar and the loose-crisp cultivar.In this paper,the aim was to find out the causes of the texture variations between the different type cultivars.Cell wall materials(CWMs),hemicellulose and cellulose content were strongly associated with variations in fruit firmness during the fruit development.The content of water soluble pectin(WSP)and chelator soluble pectin(CSP)gradually increased,while the content of ionic soluble pectin(ISP)showed inconsistent trends in the four cultivars.The activities of polygalacturonase(PG),β-galactosidase(β-gal),cellulase(CEL),and pectate lyase(PL)gradually increased in four cultivars.And the activities of PG,β-gal,and CEL were higher in‘Fuji’and‘Honeycrisp’fruit with the fruit development,while the activity of PL of‘Fuji’and‘Honeycrisp’was lower than that of‘ENVY’and‘Modi’.Both four cultivars of fruit cells progressively became bigger as the fruit expanded,with looser cell arrangements and larger cell gaps.According to the qRT-PCR,the relative expression levels of MdACO and Mdβ-gal were notably enhanced.Our study showed that there were large differences in the content of ISP and hemicellulose,the activity of PL and the relative expression of Mdβ-gal between two different types of apple cultivars,and these differences might be responsible for the variations in the texture of the four cultivars.展开更多
Greenhouse grown 1 year old potted M.9EMLA apple trees ( Malus pumila Borkh) were subjected to the soil compaction and, after growing under compacted or non compacted conditions for 6 weeks, were subjected to ...Greenhouse grown 1 year old potted M.9EMLA apple trees ( Malus pumila Borkh) were subjected to the soil compaction and, after growing under compacted or non compacted conditions for 6 weeks, were subjected to drought stress by withholding water for an additional six week period. Soil compaction and drought stress significantly reduced plant height, number of leaves, and leaf area. Although drought significantly inhibited photosynthesis and transpiration, compaction only depressed transpiration. Furthermore, the effects of drought on plant growth, photosynthesis and transpiration were much greater than the effects of compaction. The rate of water loss from compacted plants was lower than the rate from non compacted controls and this may explain the insignificant impact of compaction on photosynthesis. Sorbitol, glucose, and fructose concentrations increased over time during the drought stress period whereas sucrose concentration declined. In well watered controls, sucrose concentration was much higher in leaves of compacted plants than in the leaves on non compacted controls. For most of the sampling dates the leaf sorbitol concentration was lower in leaves on plants growing in compacted soil than in the leaves of those of the non compacted controls. Although interactions between the effects of compaction and drought were highly significant for plant growth variables during the onset of drought, interactive effects on photosynthesis, transpiration, relative water content and carbohydrate variables were inconsistent. Compaction and drought both have major effects on apple plants and the interactions between these two stresses are complex.展开更多
基金This work was supported by National Natural Sciences Foundation of China (No. 30471196).
文摘To evaluate genetic relationships using qualitative and/or quantitative differentiation of volatile components in Xinjiang Wild Apple (Malus sieversii (Lebed.) Roem.) and to acquire basic data for the conservation and utilization of the species, aroma components in ripe fruit of M. sieversii obtained from 30 seedlings at Mohe, Gongliu County, Xinjiang Autonomic Region, China, and in ripe fruit of 4 M. purnila cultivars ('Rails', 'Delicious', 'Golden Delicious', and 'Fuji') were analyzed using head space-solid phase microextraction and gas chromatography-mass spectrometry. The results indicated that the values of similarity coefficient concerning volatile types between the two species were in accordance with the evolution of M. pumila cultivars (forms), and that M. sieversii seedlings showed considerable genetic variations in these aspects: the total content of volatile components, the classes and contents of each compound classes, the segregation ratio, and content of main components. The results showed significant difference among seedlings and wide genetic diversity within the populations. Comparison of the volatile components in M. sieversii with those in M. pumila cultivars showed that the common compounds whose number were larger than five with the contents over 0.04 mg/L simultaneously between M. sieversii and M. pumila cultivars belonged to esters, alcohols, aldehydes or ketones. This suggests fundamental identity in main volatile components of M. sieversii and M. pumila cultivars. The results above sustained the conclusion "M. sieversii is probably the ancestor ofM. purnila". However, there were 48 compounds present in M. puraila that were not detected in M. sieversii, including 6 character impact components (i.e., propyl acetate, (Z)-3-hexenal, 2-methyl-l-butanol acetate, pentyl acetate, 3-furanmethanol, and benzene acetaldehyde). This suggested that in the domestication of M. pumila, introgression of other apple species, except for M. sieversii, by interspecies hybridization was possible. There were 177 compounds in total belonging to 11 classes detected in 30 M. sieversii seedlings, including esters, alcohols, ketones, aldehydes, acids, benzene ramifications, terpenes, heterocycles, hydrocarbon derivates, acetals, and lactones. Among them, acetals and lactones were not detected in M. pumila cultivars, 90 compounds were unique to M. sieversii, and 7 components (l-butanol, ethyl hutanoate, 1-hexanol, ethyl hexanoate, 3-octen-1-ol, ethyl octanoate, and damascenone) belonged to character impact odors. Thus, the potential of M. sieversii in "utilization conservation" is enormous as a rate germplasm on genetic improvement of M. pumila cultivars.
基金supported by the National Natural Science Foundation of China (Grant No. 31672104)China Agriculture Research System of MOF and MARA (Grant No. CARS-27)+4 种基金Shandong Agricultural Major Applied Technology Innovation Project (Grant No. SD2019ZZ008)Taishan Scholar Funded Project(Grant No. 20190923)Qingchuang Science and Technology Support Project of Shandong Colleges and Universities (Grant No.2019KJF020)Natural Science Foundation of Shandong Province(Grant No. ZR2020MC131)the National Key Research and Development Program of China (Grant No. 2020YFD1000201)。
文摘This study investigated the effects of six crop rotation combinations on the soil quality of old apple orchard and seedling growth of Malus hupehensis Rehd.(apple rootstock) under pot conditions. The inhibitory effects of crops such as Allium fistulosum, Brassica juncea, and Triticum aestivum on four species of Fusarium were observed and compared in six treatments. These were continuous cropping(CK), fumigation with the methyl bromide(FM), rotating A. fistulosum only(R1), rotating A. fistulosum and T. aestivum(R2), rotating A. fistulosum, B. juncea, and T. aestivum(R3), and fallow(FC) in a year. The results showed that the biomass of Malus hupehensis Rehd. seedlings increased significantly. The root length increased and the root architecture was optimized. The respiration rate of the root system was increased by about 1 time after rotation. The treatments of R1, R2, R3, and FC increased bacterial count by 232.17%, 96.04%, 316.21%, and 60.02%, respectively. However, the fungi were reduced in varying degrees and bacteria/fungi ratio was increased by 5–10 times. The enzyme activities, p H, and organic matter were increased, but soil bulk density was decreased. Phenolic acids such as phloridzin was decreased significantly. The copy number of four Fusarium species declined by 85.59%, 74.94%, 69.68%, and 54.41% after rotating three different crops(R3 treatment). The root volatiles of three plants inhibited mycelial growth and spore germination of four Fusarium species.
基金supported by the National Natural Science Foundation of China(Grant No.31672104)the earmarked fund for China Agriculture Research System(Grant No.CARS-27)+4 种基金Shandong Agricultural Major Applied Technology Innovation Project(Grant No.SD2019ZZ008)Taishan Scholar Funded Project(Grant No.20190923)Qingchuang Science and Technology Support Project of Shandong Colleges and Universities(Grant No.2019KJF020)Natural Science Foundation of Shandong Province(Grant No.ZR2020MC131)the National Key Research and Development Program of China(Grant No.2020YFD1000201).
文摘We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis for reducing the obstacles associated with apple replant disease(ARD).Isolates were screened using Salkowski colorimetry and screening medium for phloridzin.The isolate of interest(W6)was identified as Ochrobactrum haematophilum based on morphological analysis,physiological and biochemical tests,and 16S rDNA sequencing.In a laboratory experiment,W6 produced auxin and promoted the growth of Arabidopsis thaliana roots,and its degradation rate of 100 mg.L^(-1 )phloridzin was 62.0%.In a pot experiment,W6 significantly reduced the phenolic acid contents of replanted soil,lowered the abundance of the harmful fungus Fusarium solani,and increased soil enzyme activities,thereby improving the micro-ecological environment of replant soil.W6 increased the root antioxidant enzyme activity and leaf photosynthetic pigment content of replanted Malus hupehensis Rehd.seedlings,effectively alleviating the decrease in net photosynthetic rate,transpiration rate and stomatal conductance caused by ARD.In a field experiment,W6 also promoted the growth of replanted apple(the rootstock is M9T337 and the scion is Yanfu 3)saplings.Therefore,W6 can promote apple growth and degrade phenolic acids,and it can be used as an effective treatment for the reduction of ARD.
基金supported by the China Agriculture Research System of MOF and MARA (CARS-27)
文摘Fruit development and ripening is a complex procedure(Malus×domestica Borkh.)and can be caused by various factors such as cell structure,cell wall components,and cell wall hydrolytic enzymes.In our study,we focused on the variations in fruit firmness,cell wall morphology and components,the activity of cell wall hydrolytic enzymes and the expression patterns of associated genes during fruit development in two different types of apple cultivars,the hard-crisp cultivar and the loose-crisp cultivar.In this paper,the aim was to find out the causes of the texture variations between the different type cultivars.Cell wall materials(CWMs),hemicellulose and cellulose content were strongly associated with variations in fruit firmness during the fruit development.The content of water soluble pectin(WSP)and chelator soluble pectin(CSP)gradually increased,while the content of ionic soluble pectin(ISP)showed inconsistent trends in the four cultivars.The activities of polygalacturonase(PG),β-galactosidase(β-gal),cellulase(CEL),and pectate lyase(PL)gradually increased in four cultivars.And the activities of PG,β-gal,and CEL were higher in‘Fuji’and‘Honeycrisp’fruit with the fruit development,while the activity of PL of‘Fuji’and‘Honeycrisp’was lower than that of‘ENVY’and‘Modi’.Both four cultivars of fruit cells progressively became bigger as the fruit expanded,with looser cell arrangements and larger cell gaps.According to the qRT-PCR,the relative expression levels of MdACO and Mdβ-gal were notably enhanced.Our study showed that there were large differences in the content of ISP and hemicellulose,the activity of PL and the relative expression of Mdβ-gal between two different types of apple cultivars,and these differences might be responsible for the variations in the texture of the four cultivars.
文摘Greenhouse grown 1 year old potted M.9EMLA apple trees ( Malus pumila Borkh) were subjected to the soil compaction and, after growing under compacted or non compacted conditions for 6 weeks, were subjected to drought stress by withholding water for an additional six week period. Soil compaction and drought stress significantly reduced plant height, number of leaves, and leaf area. Although drought significantly inhibited photosynthesis and transpiration, compaction only depressed transpiration. Furthermore, the effects of drought on plant growth, photosynthesis and transpiration were much greater than the effects of compaction. The rate of water loss from compacted plants was lower than the rate from non compacted controls and this may explain the insignificant impact of compaction on photosynthesis. Sorbitol, glucose, and fructose concentrations increased over time during the drought stress period whereas sucrose concentration declined. In well watered controls, sucrose concentration was much higher in leaves of compacted plants than in the leaves on non compacted controls. For most of the sampling dates the leaf sorbitol concentration was lower in leaves on plants growing in compacted soil than in the leaves of those of the non compacted controls. Although interactions between the effects of compaction and drought were highly significant for plant growth variables during the onset of drought, interactive effects on photosynthesis, transpiration, relative water content and carbohydrate variables were inconsistent. Compaction and drought both have major effects on apple plants and the interactions between these two stresses are complex.