期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
苹果采摘机器人果实识别与定位方法 被引量:75
1
作者 司永胜 乔军 +2 位作者 刘刚 高瑞 何蓓 《农业机械学报》 EI CAS CSCD 北大核心 2010年第9期148-153,共6页
提出了利用归一化的红绿色差(R-G)/(R+G)分割苹果的方法。对不同光照情况下拍摄的苹果图像进行了识别,并对识别后的图像进行预处理后,获得苹果的轮廓图像。对轮廓图像采用随机圆环法进行果实圆心、半径提取。通过建立基于面积特征... 提出了利用归一化的红绿色差(R-G)/(R+G)分割苹果的方法。对不同光照情况下拍摄的苹果图像进行了识别,并对识别后的图像进行预处理后,获得苹果的轮廓图像。对轮廓图像采用随机圆环法进行果实圆心、半径提取。通过建立基于面积特征与极线几何相结合的匹配策略实现双目视觉下的果实定位,对于搜索区域内面积相似的果实,通过计算垂直投影的互相关函数最大值的方法,得到排序基准线,然后根据顺序一致性原则进行匹配。实验结果表明:识别算法可以较好地消除阴影、裸露土壤等影响,识别率达到92%。采用随机圆环法,可以准确地提取果实的圆心、半径。在60~150 cm的距离范围内,测量误差小于2 cm。 展开更多
关键词 苹果 采摘机器人 机器视觉 图像识别 立体匹配 特征提取
下载PDF
苹果采摘机器人目标果实快速跟踪识别方法 被引量:58
2
作者 吕继东 赵德安 姬伟 《农业机械学报》 EI CAS CSCD 北大核心 2014年第1期65-72,共8页
为了减少苹果采摘机器人采摘过程处理时间,对苹果采摘机器人目标果实的快速跟踪识别方法进行了研究。对基于R-G颜色特征的OTSU动态阈值分割方法进行首帧采集图像分割,采用图像中心原则确定要采摘的目标果实;利用所采集图像之间的信息关... 为了减少苹果采摘机器人采摘过程处理时间,对苹果采摘机器人目标果实的快速跟踪识别方法进行了研究。对基于R-G颜色特征的OTSU动态阈值分割方法进行首帧采集图像分割,采用图像中心原则确定要采摘的目标果实;利用所采集图像之间的信息关联性,在不断缩小图像处理区域的同时,采用经过加速优化改进的去均值归一化积相关模板匹配算法来跟踪识别后帧图像的目标果实,并进行不同阈值分割方法实现效果,不同灰度、亮度和对比度的匹配识别以及新旧方法识别时间对比试验,从而验证了所采用和设计方法的有效性;其中所设计跟踪识别方法的识别时间相比于原方法,减少36%。 展开更多
关键词 苹果 采摘机器人 跟踪识别 动态图像
下载PDF
采摘机器人振荡果实动态识别 被引量:49
3
作者 吕继东 赵德安 +3 位作者 姬伟 陈玉 沈惠良 张颖 《农业机械学报》 EI CAS CSCD 北大核心 2012年第5期173-178,196,共7页
提出一种采摘机器人在果实振荡状况下的动态识别方法,解决由于果实振荡影响采摘机器人识别定位时间,进而影响采摘速度和效率的问题。首先对所采集的振荡果实图像进行图像分割,将其分为果实和背景两部分;其次引入帧间差分法、水平最小外... 提出一种采摘机器人在果实振荡状况下的动态识别方法,解决由于果实振荡影响采摘机器人识别定位时间,进而影响采摘速度和效率的问题。首先对所采集的振荡果实图像进行图像分割,将其分为果实和背景两部分;其次引入帧间差分法、水平最小外接矩形法等对分割图像进行振荡果实动态区域的区域标识,然后对其振荡果实进行识别,当图像中有多个振荡果实时,以距离图像中心最近原则确定采摘振荡目标果实。试验结果表明对实际采摘环境下遇到的多数情况,所提算法都能很好地识别出振荡果实,识别时间少于0.5 s。 展开更多
关键词 采摘机器人 振荡 图像分割 动态识别
下载PDF
基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位 被引量:175
4
作者 赵德安 吴任迪 +1 位作者 刘晓洋 赵宇艳 《农业工程学报》 EI CAS CSCD 北大核心 2019年第3期164-173,共10页
为提高苹果采摘机器人的工作效率和环境适应性,使其能全天候的在不同光线环境下对遮挡、粘连和套袋等多种情况下的果实进行识别定位,该文提出了基于YOLOv3(you only look once)深度卷积神经网络的苹果定位方法。该方法通过单个卷积神经... 为提高苹果采摘机器人的工作效率和环境适应性,使其能全天候的在不同光线环境下对遮挡、粘连和套袋等多种情况下的果实进行识别定位,该文提出了基于YOLOv3(you only look once)深度卷积神经网络的苹果定位方法。该方法通过单个卷积神经网络(one-stage)遍历整个图像,回归目标的类别和位置,实现了直接端到端的目标检测,在保证效率与准确率兼顾的情况下实现了复杂环境下苹果的检测。经过训练的模型在验证集下的m AP(meanaverageprecision)为87.71%,准确率为97%,召回率为90%,IOU(intersection over union)为83.61%。通过比较YOLOv3与Faster RCNN算法在不同数目、不同拍摄时间、不同生长阶段、不同光线下对苹果的实际检测效果,并以F1为评估值对比分析了4种算法的差异,试验结果表明YOLOv3在密集苹果的F1高于YOLOv2算法4.45个百分点,在其他环境下高于Faster RCNN将近5个百分点,高于HOG+SVM(histogram of oriented gradient+support vector machine)将近10个百分点。并且在不同硬件环境验证了该算法的可行性,一幅图像在GPU下的检测时间为16.69 ms,在CPU下的检测时间为105.21 ms,实际检测视频的帧率达到了60帧/s和15帧/s。该研究可为机器人快速长时间高效率在复杂环境下识别苹果提供理论基础。 展开更多
关键词 收获机 机器视觉 图像识别 深度学习 采摘机器人 苹果识别 YOLO
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部