This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr...This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.展开更多
The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this...The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies.展开更多
Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weight...Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed.展开更多
With the economic development and the popularity of application of electronic computer, electronic commerce has rapid development. More and more commerce and key business has been carried on the lnternet because Inter...With the economic development and the popularity of application of electronic computer, electronic commerce has rapid development. More and more commerce and key business has been carried on the lnternet because Internet has the features of interaction, openness, sharing and so on. However, during the daily commerce, people worry about the security of the network system. So a new technology which can detect the unusual behavior in time has been invented in order to protect the security of network system. The system of intrusion detection needs a lot of new technology to protect the data of the network system. The application of data mining technology in the system of intrusion detection can provide a better assistant to the users to analyze the data and improve the accuracy of the checking system.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener...The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.展开更多
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has...The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.展开更多
In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion ...In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
In recent years,cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things(IoT)and the widespread development of computer infrastructure and systems.It is thus becoming particul...In recent years,cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things(IoT)and the widespread development of computer infrastructure and systems.It is thus becoming particularly necessary to identify cyber-attacks or irregularities in the system and develop an efficient intrusion detection framework that is integral to security.Researchers have worked on developing intrusion detection models that depend on machine learning(ML)methods to address these security problems.An intelligent intrusion detection device powered by data can exploit artificial intelligence(AI),and especially ML,techniques.Accordingly,we propose in this article an intrusion detection model based on a Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System(RTS-DELM-CSIDS)security model.The proposed model initially determines the rating of security aspects contributing to their significance and then develops a comprehensive intrusion detection framework focused on the essential characteristics.Furthermore,we investigated the feasibility of our proposed RTS-DELM-CSIDS framework by performing dataset evaluations and calculating accuracy parameters to validate.The experimental findings demonstrate that the RTS-DELM-CSIDS framework outperforms conventional algorithms.Furthermore,the proposed approach has not only research significance but also practical significance.展开更多
The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, b...The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our proposed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.展开更多
Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack...Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.展开更多
A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or ma...A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management.展开更多
Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent di...Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent distributed IDS model, enhanced with a method of computing its statistical values of performance is presented. This model can accomplish not only distributed information collection, but also distributed intrusion detection and real-time reaction. Owing to prompt reaction and openness, it can detect intrusion behavior of both known and unknown sources. According to preliminary tests, the accuracy ratio of intrusion detection is higher than 92% on the average.展开更多
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to...Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.展开更多
To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theor...To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theory has merits of fewer requirements on original data scale, less limitation of the distribution pattern and simpler algorithm in modeling. With these merits GTIDS constructs model according to partial time sequence for rapid detect on intrusive act in secure system. In this detection model rate of false drop and false retrieval are effectively reduced through twice modeling and repeated detect on target data. Furthermore, GTIDS framework and specific process of modeling algorithm are presented. The affectivity of GTIDS is proved through emulated experiments comparing snort and next-generation intrusion detection expert system (NIDES) in SRI international.展开更多
Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tr...Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.展开更多
Snort rule-checking is one of the most popular forms of Network Intrusion Detection Systems (NIDS). In this article, we show that Snort priorities of true positive traffic (real attacks) can be approximated in real-ti...Snort rule-checking is one of the most popular forms of Network Intrusion Detection Systems (NIDS). In this article, we show that Snort priorities of true positive traffic (real attacks) can be approximated in real-time, in the context of high speed networks, by a decision tree classifier, using the information of only three easily extracted features (protocol, source port, and destination port), with an accuracy of 99%. Snort issues alert priorities based on its own default set of attack classes (34 classes) that are used by the default set of rules it provides. But the decision tree model is able to predict the priorities without using this default classification. The obtained tagger can provide a useful complement to an anomaly detection intrusion detection system.展开更多
Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)...Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field.展开更多
基金Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2024R319)funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.
文摘The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies.
文摘Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed.
文摘With the economic development and the popularity of application of electronic computer, electronic commerce has rapid development. More and more commerce and key business has been carried on the lnternet because Internet has the features of interaction, openness, sharing and so on. However, during the daily commerce, people worry about the security of the network system. So a new technology which can detect the unusual behavior in time has been invented in order to protect the security of network system. The system of intrusion detection needs a lot of new technology to protect the data of the network system. The application of data mining technology in the system of intrusion detection can provide a better assistant to the users to analyze the data and improve the accuracy of the checking system.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
文摘The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
基金the National Natural Science Foundation of China(No.61662004).
文摘The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.
基金support and help from the People’s Armed Police Force of China Engineering University,College of Information Engineering Subject Group,which funded this work under the All-Army Military Theory Research Project,Armed Police Force Military Theory Research Project(WJJY22JL0498).
文摘In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Nos.2019R1A4A1023746,2019R1F1A1060799)and Strengthening R&D Capability Program of Sejong University.
文摘In recent years,cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things(IoT)and the widespread development of computer infrastructure and systems.It is thus becoming particularly necessary to identify cyber-attacks or irregularities in the system and develop an efficient intrusion detection framework that is integral to security.Researchers have worked on developing intrusion detection models that depend on machine learning(ML)methods to address these security problems.An intelligent intrusion detection device powered by data can exploit artificial intelligence(AI),and especially ML,techniques.Accordingly,we propose in this article an intrusion detection model based on a Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System(RTS-DELM-CSIDS)security model.The proposed model initially determines the rating of security aspects contributing to their significance and then develops a comprehensive intrusion detection framework focused on the essential characteristics.Furthermore,we investigated the feasibility of our proposed RTS-DELM-CSIDS framework by performing dataset evaluations and calculating accuracy parameters to validate.The experimental findings demonstrate that the RTS-DELM-CSIDS framework outperforms conventional algorithms.Furthermore,the proposed approach has not only research significance but also practical significance.
文摘The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our proposed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.
文摘Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.
文摘A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management.
基金Supported by the Key Program of Natural Science Foundation of China(050335020)
文摘Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent distributed IDS model, enhanced with a method of computing its statistical values of performance is presented. This model can accomplish not only distributed information collection, but also distributed intrusion detection and real-time reaction. Owing to prompt reaction and openness, it can detect intrusion behavior of both known and unknown sources. According to preliminary tests, the accuracy ratio of intrusion detection is higher than 92% on the average.
基金the National High Technology Development "863" Program of China (2006AA01Z436, 2007AA01Z452)the National Natural Science Foundation of China(60702042).
文摘Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.
文摘To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theory has merits of fewer requirements on original data scale, less limitation of the distribution pattern and simpler algorithm in modeling. With these merits GTIDS constructs model according to partial time sequence for rapid detect on intrusive act in secure system. In this detection model rate of false drop and false retrieval are effectively reduced through twice modeling and repeated detect on target data. Furthermore, GTIDS framework and specific process of modeling algorithm are presented. The affectivity of GTIDS is proved through emulated experiments comparing snort and next-generation intrusion detection expert system (NIDES) in SRI international.
基金Data and Artificial Intelligence Scientific Chair at Umm AlQura University.
文摘Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.
文摘Snort rule-checking is one of the most popular forms of Network Intrusion Detection Systems (NIDS). In this article, we show that Snort priorities of true positive traffic (real attacks) can be approximated in real-time, in the context of high speed networks, by a decision tree classifier, using the information of only three easily extracted features (protocol, source port, and destination port), with an accuracy of 99%. Snort issues alert priorities based on its own default set of attack classes (34 classes) that are used by the default set of rules it provides. But the decision tree model is able to predict the priorities without using this default classification. The obtained tagger can provide a useful complement to an anomaly detection intrusion detection system.
基金supported by King Khalid University,Saudi Arabia underGrant No.RGP.2/61/43.
文摘Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field.