The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosp...The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.展开更多
Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulate...Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulates the expression of stress tolerance-related genes in response to drought, high salinity and cold stress in plant. Soybean with DREB gene possesses the drought resisting capability which is helpful to increase the yield. However, the potential risk of genetically modified plants(GMPs) on soil microbial community is still in debate. In order to understand the effects of transgenic DREB soybean on the nitrogen-fixing bacteria, the diversity of nif H gene in pot experiments planted transgenic soybean and near-isogenic nontransgenic soybean under normal water condition and drought stress condition was analyzed by PCR-DGGE and sequence analysis. The results showed that transgenic soybean under normal water condition decrease the diversity of the nitrogen-fixing bacteria in the seeding stage and flowering stage, but had no notable effect in other stages. Under drought stress, transgenic soybean reduced the diversity of the nitrogen-fixing bacteria in the flowering stage, but had no notable effects on other stages. Phylogenic analysis revealed that g7, g13, g15 and g19 had a close relationship with Alphaproteobacteria, g12 had a close relationship with Azonexus, others were related to Betaproteobacteria and Burkholderia.展开更多
With the continuous increase of large-scale pig farms,the disinfection of pig farm environment plays an extremely important part in the control and prevention of pig farm diseases in high-density breeding environment....With the continuous increase of large-scale pig farms,the disinfection of pig farm environment plays an extremely important part in the control and prevention of pig farm diseases in high-density breeding environment.As an important breeding place for pig farms,the farrowing house must be performed with scientific and standardized disinfection.In this paper,different disinfection modes were used to disinfect the empty farrowing houses of pig farms,and the total plate count,Escherichia coli,Staphylococcus aureus,and fungi were used as detection indicators to comprehensively evaluate the disinfection effect of the air microorganisms and the surface of the objects in the empty house after disinfection,with the aim to provide a basis for the establishment of a scientific pig farm environmental disinfection model.展开更多
Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecolo...Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.展开更多
ARB was investigated in different soil types following manure application.CTC-manure induced more resistance of soil indigenous microbes in fluvo-aquic soil.Lactobacillus,Dyella,Ralstonia,and Bacillus were the key dif...ARB was investigated in different soil types following manure application.CTC-manure induced more resistance of soil indigenous microbes in fluvo-aquic soil.Lactobacillus,Dyella,Ralstonia,and Bacillus were the key different genera.Manure control is an effective way to reduce the risk of soil ARB.展开更多
文摘The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.
基金Supported by the Special Scientific Fund for Non-profit Environmental Industry(2010467038)
文摘Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulates the expression of stress tolerance-related genes in response to drought, high salinity and cold stress in plant. Soybean with DREB gene possesses the drought resisting capability which is helpful to increase the yield. However, the potential risk of genetically modified plants(GMPs) on soil microbial community is still in debate. In order to understand the effects of transgenic DREB soybean on the nitrogen-fixing bacteria, the diversity of nif H gene in pot experiments planted transgenic soybean and near-isogenic nontransgenic soybean under normal water condition and drought stress condition was analyzed by PCR-DGGE and sequence analysis. The results showed that transgenic soybean under normal water condition decrease the diversity of the nitrogen-fixing bacteria in the seeding stage and flowering stage, but had no notable effect in other stages. Under drought stress, transgenic soybean reduced the diversity of the nitrogen-fixing bacteria in the flowering stage, but had no notable effects on other stages. Phylogenic analysis revealed that g7, g13, g15 and g19 had a close relationship with Alphaproteobacteria, g12 had a close relationship with Azonexus, others were related to Betaproteobacteria and Burkholderia.
基金Supported by the Major Science and Technology Innovation Project of Shandong Province(2019JZZY020606)。
文摘With the continuous increase of large-scale pig farms,the disinfection of pig farm environment plays an extremely important part in the control and prevention of pig farm diseases in high-density breeding environment.As an important breeding place for pig farms,the farrowing house must be performed with scientific and standardized disinfection.In this paper,different disinfection modes were used to disinfect the empty farrowing houses of pig farms,and the total plate count,Escherichia coli,Staphylococcus aureus,and fungi were used as detection indicators to comprehensively evaluate the disinfection effect of the air microorganisms and the surface of the objects in the empty house after disinfection,with the aim to provide a basis for the establishment of a scientific pig farm environmental disinfection model.
基金Supported by Hebei Provincial Key R&D projects(21327306D)Hebei Provincial Key R&D projects(20326807D)Chengde Science and Technology Research and Development Planning Project(202103B003).
文摘Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.
基金funded by the Yangtze River Ecological Protection Project(2022-LHYJ-02-0304)the National Key Research and Development Program(2021YFC3201503)+2 种基金the Start-up Funds for Doctoral Research Projects of Jilin Normal University(0420221)the Agricultural Science and Technology Innovation Program of China(CAAS-CFSGLCA-IEDA-202302)the Beijing Innovation Consortium of Livestock Research System(BAICO5-2022).
文摘ARB was investigated in different soil types following manure application.CTC-manure induced more resistance of soil indigenous microbes in fluvo-aquic soil.Lactobacillus,Dyella,Ralstonia,and Bacillus were the key different genera.Manure control is an effective way to reduce the risk of soil ARB.