New and increasingly sharp laws for the reduction of emissions from commercial vehicles entered into force in the European Union since 1993 with the aim of substan-tially reducing pollutants and emissions from trucks ...New and increasingly sharp laws for the reduction of emissions from commercial vehicles entered into force in the European Union since 1993 with the aim of substan-tially reducing pollutants and emissions from trucks and buses. Thereby the maximum levels for the emission of particulate matter (basically soot particles) as well as oxides of nitrogen (NOx) have been subsequently lowered. To comply with these demands, commercial vehicle producers had to introduce new emission reducing technologies of which exhaust-gas recirculation (EGR),展开更多
Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A br...Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper.展开更多
文摘New and increasingly sharp laws for the reduction of emissions from commercial vehicles entered into force in the European Union since 1993 with the aim of substan-tially reducing pollutants and emissions from trucks and buses. Thereby the maximum levels for the emission of particulate matter (basically soot particles) as well as oxides of nitrogen (NOx) have been subsequently lowered. To comply with these demands, commercial vehicle producers had to introduce new emission reducing technologies of which exhaust-gas recirculation (EGR),
基金financially supported by the National High Technology Research and Development Program of China (No.2015AA033702)the National Basic Research Program of China (Nos.2012CB619103 and 2012CB933901)the National Natural Science Foundation of China (Nos.51271180 and 51271182)
文摘Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper.