Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted b...Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted by the buoyant CO2plume, CO2gradually penetrates into the caprock. The CO2penetration depth into a caprock layer can be used to measure the caprock sealing efficiency and becomes the key issue to the assessment of caprock sealing efficiency. On the other hand, our numerical simulations on a caprock layer have revealed that a square root law for time and pore pressure exists for the CO2penetration into the caprock layer. Based on this finding, this study proposes a simple approach to estimate the CO2penetration depth into a caprock layer. This simple approach is initially developed to consider the speed of CO2invading front. It explicitly expresses the penetration depth with pressuring time, pressure difference and pressure magnitude. This simple approach is then used to fit three sets of experimental data and good fittings are observed regardless of pressures, strengths of porous media, and pore fluids(water,hydrochloric acid, and carbonic acid). Finally, theoretical analyses are conducted to explore those factors affecting CO2penetration depth. The effects of capillary pressure, gas sorption induced swelling, and fluid property are then included in this simple approach. These results show that this simple approach can predict the penetration depth into a caprock layer with sufficient accuracy, even if complicated interactions in penetration process are not explicitly expressed in this simple formula.展开更多
In this paper the influence of superconducting correlations on the thermal and charge conductances in a normal metal-superconductor (NS) junction in the clean limit is studied theoretically. First we solve the quasi...In this paper the influence of superconducting correlations on the thermal and charge conductances in a normal metal-superconductor (NS) junction in the clean limit is studied theoretically. First we solve the quasiclassical Eilenberger equations, and using the obtained density of states we can acquire the thermal and electrical conductances for the NS junction. Then we compare the conductance in a normal region of an NS junction with that in a single layer of normal metal (N). Moreover, we study the Wiedemann-Franz (WF) law for these two cases (iN and NS). From our calculations we conclude that the behaviour of the NS junction does not conform to the WF law for all temperatures. The effect of the thickness of normal metal on the thermal conductivity is also theoretically investigated in the paper.展开更多
针对无人水下机器人(unmanned underwater vehicle,UUV)工作中存在的执行器故障,在系统不确定性与外界干扰下,提出一种基于有限时间扰动观测器(finite time disturbance observer,FTDO),并结合改进模型的自适应鲁棒容错控制方法。一方面...针对无人水下机器人(unmanned underwater vehicle,UUV)工作中存在的执行器故障,在系统不确定性与外界干扰下,提出一种基于有限时间扰动观测器(finite time disturbance observer,FTDO),并结合改进模型的自适应鲁棒容错控制方法。一方面,FTDO能在有限时间内对外界环境干扰进行估计;另一方面利用滑模控制加上径向基神经网络(radial basis function neyral network,RBF)的万能逼近特性,建立带有执行器故障的输入补偿;其中改进模型的引入解决了系统不确定性导致的输入饱和,提高了稳定性与鲁棒性;其次采用一种新型的双幂趋近律使滑模量在更短时间收敛到稳态误差界内;仿真与水池实验结果表明了所提方法相对于滑模控制有着更好的容错效果。展开更多
基金the financial support from the Creative Research and Development Group Program of Jiangsu Province(2014-27)the National Science Fund for Distinguished Young Scholars(Grant No.51125017)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD2014)
文摘Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted by the buoyant CO2plume, CO2gradually penetrates into the caprock. The CO2penetration depth into a caprock layer can be used to measure the caprock sealing efficiency and becomes the key issue to the assessment of caprock sealing efficiency. On the other hand, our numerical simulations on a caprock layer have revealed that a square root law for time and pore pressure exists for the CO2penetration into the caprock layer. Based on this finding, this study proposes a simple approach to estimate the CO2penetration depth into a caprock layer. This simple approach is initially developed to consider the speed of CO2invading front. It explicitly expresses the penetration depth with pressuring time, pressure difference and pressure magnitude. This simple approach is then used to fit three sets of experimental data and good fittings are observed regardless of pressures, strengths of porous media, and pore fluids(water,hydrochloric acid, and carbonic acid). Finally, theoretical analyses are conducted to explore those factors affecting CO2penetration depth. The effects of capillary pressure, gas sorption induced swelling, and fluid property are then included in this simple approach. These results show that this simple approach can predict the penetration depth into a caprock layer with sufficient accuracy, even if complicated interactions in penetration process are not explicitly expressed in this simple formula.
文摘In this paper the influence of superconducting correlations on the thermal and charge conductances in a normal metal-superconductor (NS) junction in the clean limit is studied theoretically. First we solve the quasiclassical Eilenberger equations, and using the obtained density of states we can acquire the thermal and electrical conductances for the NS junction. Then we compare the conductance in a normal region of an NS junction with that in a single layer of normal metal (N). Moreover, we study the Wiedemann-Franz (WF) law for these two cases (iN and NS). From our calculations we conclude that the behaviour of the NS junction does not conform to the WF law for all temperatures. The effect of the thickness of normal metal on the thermal conductivity is also theoretically investigated in the paper.
文摘针对无人水下机器人(unmanned underwater vehicle,UUV)工作中存在的执行器故障,在系统不确定性与外界干扰下,提出一种基于有限时间扰动观测器(finite time disturbance observer,FTDO),并结合改进模型的自适应鲁棒容错控制方法。一方面,FTDO能在有限时间内对外界环境干扰进行估计;另一方面利用滑模控制加上径向基神经网络(radial basis function neyral network,RBF)的万能逼近特性,建立带有执行器故障的输入补偿;其中改进模型的引入解决了系统不确定性导致的输入饱和,提高了稳定性与鲁棒性;其次采用一种新型的双幂趋近律使滑模量在更短时间收敛到稳态误差界内;仿真与水池实验结果表明了所提方法相对于滑模控制有着更好的容错效果。