Colon cancer is the fifth most common type of cancer in the world.Colon cancer develops when healthy cells in the lining of the colon or rectum alter and grow uncontrollably to form a mass known as a tumor.Despite maj...Colon cancer is the fifth most common type of cancer in the world.Colon cancer develops when healthy cells in the lining of the colon or rectum alter and grow uncontrollably to form a mass known as a tumor.Despite major medical improvements,colon cancer is still one of the leading causes of cancer-related mortality globally.One of the main issues of chemotherapy is toxicity related to conventional medicines.The targeted delivery systems are considered the safest and most effective by increasing the concentration of a therapeutic substance at the tumor site while decreasing it at other organs.Therefore,these delivery systems required lower doses for high therapeutic value with minimum side effects.The current review focuses on targeting therapeutic substances at the desired site using nanocarriers.Additionally,the diagnostic applications of nanocarriers in colorectal cancer are also discussed.展开更多
A novel high-order target phase approach(TPhA)for the station-keeping of periodic orbits is proposed in this work.The key elements of the TPhA method,the phase-angle Poincare map and high-order maneuver map,are constr...A novel high-order target phase approach(TPhA)for the station-keeping of periodic orbits is proposed in this work.The key elements of the TPhA method,the phase-angle Poincare map and high-order maneuver map,are constructed using differential algebra(DA)techniques to determine station-keeping epochs and calculate correction maneuvers.A stochastic optimization framework tailored for the TPhA-based station-keeping process is leveraged to search for fuel-optimal and error-robust TPhA parameters.Quasi-satellite orbits(QSOs)around Phobos are investigated to demonstrate the efficacy of TPhA in mutli-fidelity dynamical models.Monte Carlo simulations demonstrated that the baseline QSO of JAXA’s Martian Moons eXploration(MMX)mission could be maintained with a monthly maneuver budget of approximately 1 m/s.展开更多
Background: One of the most important and challenging issues in biomedicine and genomics is how to identify disease related genes. Datasets from high-throughput biotechnologies have been widely used to overcome this ...Background: One of the most important and challenging issues in biomedicine and genomics is how to identify disease related genes. Datasets from high-throughput biotechnologies have been widely used to overcome this issue from various perspectives, e.g., epigenomics, genomics, transcriptomics, proteomics, metabolomics. At the genomic level, copy number variations (CNVs) have been recognized as critical genetic variations, which contribute significantly to genomic diversity. They have been associated with both common and complex diseases, and thus have a large influence on a variety of Mendelian and somatic genetic disorders. Results: In this review, based on a variety of complex diseases, we give an overview about the critical role of using CNVs for identifying disease related genes, and discuss on details the different high-throughput and sequencing methods applied for CNV detection. Some limitations and challenges concerning CNV are also highlighted. Conclusions: Reliable detection of CNVs will not only allow discriminating driver mutations for various diseases, but also helps to develop personalized medicine when integrating it with other genomic features.展开更多
文摘Colon cancer is the fifth most common type of cancer in the world.Colon cancer develops when healthy cells in the lining of the colon or rectum alter and grow uncontrollably to form a mass known as a tumor.Despite major medical improvements,colon cancer is still one of the leading causes of cancer-related mortality globally.One of the main issues of chemotherapy is toxicity related to conventional medicines.The targeted delivery systems are considered the safest and most effective by increasing the concentration of a therapeutic substance at the tumor site while decreasing it at other organs.Therefore,these delivery systems required lower doses for high therapeutic value with minimum side effects.The current review focuses on targeting therapeutic substances at the desired site using nanocarriers.Additionally,the diagnostic applications of nanocarriers in colorectal cancer are also discussed.
文摘A novel high-order target phase approach(TPhA)for the station-keeping of periodic orbits is proposed in this work.The key elements of the TPhA method,the phase-angle Poincare map and high-order maneuver map,are constructed using differential algebra(DA)techniques to determine station-keeping epochs and calculate correction maneuvers.A stochastic optimization framework tailored for the TPhA-based station-keeping process is leveraged to search for fuel-optimal and error-robust TPhA parameters.Quasi-satellite orbits(QSOs)around Phobos are investigated to demonstrate the efficacy of TPhA in mutli-fidelity dynamical models.Monte Carlo simulations demonstrated that the baseline QSO of JAXA’s Martian Moons eXploration(MMX)mission could be maintained with a monthly maneuver budget of approximately 1 m/s.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61602386 and 61332014), the Natural Science Foundation of Shaanxi Province (No. 2017JQ6008), and the top university visiting foundation for excellent youth scholars of Northwestern Polytechnical University.
文摘Background: One of the most important and challenging issues in biomedicine and genomics is how to identify disease related genes. Datasets from high-throughput biotechnologies have been widely used to overcome this issue from various perspectives, e.g., epigenomics, genomics, transcriptomics, proteomics, metabolomics. At the genomic level, copy number variations (CNVs) have been recognized as critical genetic variations, which contribute significantly to genomic diversity. They have been associated with both common and complex diseases, and thus have a large influence on a variety of Mendelian and somatic genetic disorders. Results: In this review, based on a variety of complex diseases, we give an overview about the critical role of using CNVs for identifying disease related genes, and discuss on details the different high-throughput and sequencing methods applied for CNV detection. Some limitations and challenges concerning CNV are also highlighted. Conclusions: Reliable detection of CNVs will not only allow discriminating driver mutations for various diseases, but also helps to develop personalized medicine when integrating it with other genomic features.