In this paper, we show that if T is p-ω-hyponormal, the nonzero points of the approximate and joint approximate point spectrum of T are identical; Moreover, we obtain a pair of inequalities similar to p-ω-hyponormal...In this paper, we show that if T is p-ω-hyponormal, the nonzero points of the approximate and joint approximate point spectrum of T are identical; Moreover, we obtain a pair of inequalities similar to p-ω-hyponormal operators.展开更多
The study of operators satisfying σja(T ) = σa(T ) is of significant interest. Does σja(T ) = σa(T ) for n-perinormal operator T ∈ B(H)? This question was raised by Mecheri and Braha [Oper. Matrices 6 ...The study of operators satisfying σja(T ) = σa(T ) is of significant interest. Does σja(T ) = σa(T ) for n-perinormal operator T ∈ B(H)? This question was raised by Mecheri and Braha [Oper. Matrices 6 (2012), 725-734]. In the note we construct a counterexample to this question and obtain the following result: if T is a n-perinormal operator in B(H), then σja(T )/{0} = σa(T )/{0}. We also consider tensor product of n-perinormal operators.展开更多
In this article, we study characterization, stability, and spectral mapping the- orem for Browder's essential spectrum, Browder's essential defect spectrum and Browder's essential approximate point spectrum of clos...In this article, we study characterization, stability, and spectral mapping the- orem for Browder's essential spectrum, Browder's essential defect spectrum and Browder's essential approximate point spectrum of closed densely defined linear operators on Banach spaces.展开更多
An operator T is called k-quasi-*-A(n) operator, if T^(*k)|T^(1+n)|^(2/(1+n))T^k ≥T^(*k)|T~* |~2T^k , k ∈ Z, which is a generalization of quasi-*-A(n) operator. In this paper we prove some properties of k-quasi-*-A(...An operator T is called k-quasi-*-A(n) operator, if T^(*k)|T^(1+n)|^(2/(1+n))T^k ≥T^(*k)|T~* |~2T^k , k ∈ Z, which is a generalization of quasi-*-A(n) operator. In this paper we prove some properties of k-quasi-*-A(n) operator, such as, if T is a k-quasi-*-A(n) operator and N(T )■N(T~* ), then its point spectrum and joint point spectrum are identical. Using these results, we also prove that if T is a k-quasi-*-A(n) operator and N(T )■N(T ), then the spectral mapping theorem holds for the Weyl spectrum and for the essential approximate point spectrum.展开更多
The approximate point spectrum properties of p-ω-hyponormal operators are given and proved. In faet, it is a generalization of approximate point speetrum properties of ω- hyponormal operators. The relation of spectr...The approximate point spectrum properties of p-ω-hyponormal operators are given and proved. In faet, it is a generalization of approximate point speetrum properties of ω- hyponormal operators. The relation of spectra and numerical range of p-ω-hyponormal operators is obtained, On the other hand, for p-ω-hyponormal operators T,it is showed that if Y is normal,then T is also normal.展开更多
Let H be a separable infinite dimensional complex Hilbert space, and L(H) the algebra of all bounded linear operators on 3-t'. The class of finite operators is the class of operators for which the distance of the i...Let H be a separable infinite dimensional complex Hilbert space, and L(H) the algebra of all bounded linear operators on 3-t'. The class of finite operators is the class of operators for which the distance of the identity operator I and the derivation range is maximal; where the derivation range of the operator A is defined by δA;δA : L(H) -L(H) X- AX - XA. In this paper we present some properties of finite operators and give some classes of operators which are in the class of finite operators, and find for witch condition A ~ W is a finite operator in L(2-H H), and gave a g6neralisation of Stampflli theorem.展开更多
基金Supported by the Education Foundation of Henan Province(2003110006)
文摘In this paper, we show that if T is p-ω-hyponormal, the nonzero points of the approximate and joint approximate point spectrum of T are identical; Moreover, we obtain a pair of inequalities similar to p-ω-hyponormal operators.
基金supported by NNSF(1122618511201126)the Basic Science and Technological Frontier Project of Henan Province(132300410261)
文摘The study of operators satisfying σja(T ) = σa(T ) is of significant interest. Does σja(T ) = σa(T ) for n-perinormal operator T ∈ B(H)? This question was raised by Mecheri and Braha [Oper. Matrices 6 (2012), 725-734]. In the note we construct a counterexample to this question and obtain the following result: if T is a n-perinormal operator in B(H), then σja(T )/{0} = σa(T )/{0}. We also consider tensor product of n-perinormal operators.
文摘In this article, we study characterization, stability, and spectral mapping the- orem for Browder's essential spectrum, Browder's essential defect spectrum and Browder's essential approximate point spectrum of closed densely defined linear operators on Banach spaces.
基金Supported by the Natural Science Foundation of the Department of Education of Henan Province(12B110025, 102300410012)
文摘An operator T is called k-quasi-*-A(n) operator, if T^(*k)|T^(1+n)|^(2/(1+n))T^k ≥T^(*k)|T~* |~2T^k , k ∈ Z, which is a generalization of quasi-*-A(n) operator. In this paper we prove some properties of k-quasi-*-A(n) operator, such as, if T is a k-quasi-*-A(n) operator and N(T )■N(T~* ), then its point spectrum and joint point spectrum are identical. Using these results, we also prove that if T is a k-quasi-*-A(n) operator and N(T )■N(T ), then the spectral mapping theorem holds for the Weyl spectrum and for the essential approximate point spectrum.
文摘The approximate point spectrum properties of p-ω-hyponormal operators are given and proved. In faet, it is a generalization of approximate point speetrum properties of ω- hyponormal operators. The relation of spectra and numerical range of p-ω-hyponormal operators is obtained, On the other hand, for p-ω-hyponormal operators T,it is showed that if Y is normal,then T is also normal.
文摘Let H be a separable infinite dimensional complex Hilbert space, and L(H) the algebra of all bounded linear operators on 3-t'. The class of finite operators is the class of operators for which the distance of the identity operator I and the derivation range is maximal; where the derivation range of the operator A is defined by δA;δA : L(H) -L(H) X- AX - XA. In this paper we present some properties of finite operators and give some classes of operators which are in the class of finite operators, and find for witch condition A ~ W is a finite operator in L(2-H H), and gave a g6neralisation of Stampflli theorem.