In this paper,we consider approximation algorithms for optimizing a generic multivariate polynomial function in discrete(typically binary)variables.Such models have natural applications in graph theory,neural networks...In this paper,we consider approximation algorithms for optimizing a generic multivariate polynomial function in discrete(typically binary)variables.Such models have natural applications in graph theory,neural networks,error-correcting codes,among many others.In particular,we focus on three types of optimization models:(1)maximizing a homogeneous polynomial function in binary variables;(2)maximizing a homogeneous polynomial function in binary variables,mixed with variables under spherical constraints;(3)maximizing an inhomogeneous polynomial function in binary variables.We propose polynomial-time randomized approximation algorithms for such polynomial optimizationmodels,and establish the approximation ratios(or relative approximation ratios whenever appropriate)for the proposed algorithms.Some examples of applications for these models and algorithms are discussed as well.展开更多
We consider approximation algorithms for nonnegative polynomial optimization problems over unit spheres. These optimization problems have wide applications e.g., in signal and image processing, high order statistics, ...We consider approximation algorithms for nonnegative polynomial optimization problems over unit spheres. These optimization problems have wide applications e.g., in signal and image processing, high order statistics, and computer vision. Since these problems are NP-hard, we are interested in studying on approximation algorithms. In particular, we propose some polynomial-time approximation algorithms with new approximation bounds. In addition, based on these approximation algorithms, some efficient algorithms are presented and numerical results are reported to show the efficiency of our proposed algorithms.展开更多
基金supported in part by Hong Kong General Research Fund(No.CityU143711)Zhening Li was supported in part by Natural Science Foundation of Shanghai(No.12ZR1410100)+1 种基金Ph.D.Programs Foundation of Chinese Ministry of Education(No.20123108120002)Shuzhong Zhang was supported in part by U.S.National Science Foundation(No.CMMI-1161242).
文摘In this paper,we consider approximation algorithms for optimizing a generic multivariate polynomial function in discrete(typically binary)variables.Such models have natural applications in graph theory,neural networks,error-correcting codes,among many others.In particular,we focus on three types of optimization models:(1)maximizing a homogeneous polynomial function in binary variables;(2)maximizing a homogeneous polynomial function in binary variables,mixed with variables under spherical constraints;(3)maximizing an inhomogeneous polynomial function in binary variables.We propose polynomial-time randomized approximation algorithms for such polynomial optimizationmodels,and establish the approximation ratios(or relative approximation ratios whenever appropriate)for the proposed algorithms.Some examples of applications for these models and algorithms are discussed as well.
基金The authors would like to thank the reviewers for their insightful comments which help to improve the presentation of the paper. The first author's work was supported by the National Natural Science Foundation of China (Grant No. 11471242) and the work of the second author was supported by the National Natural Science Foundation of China (Grant No. 11601261).
文摘We consider approximation algorithms for nonnegative polynomial optimization problems over unit spheres. These optimization problems have wide applications e.g., in signal and image processing, high order statistics, and computer vision. Since these problems are NP-hard, we are interested in studying on approximation algorithms. In particular, we propose some polynomial-time approximation algorithms with new approximation bounds. In addition, based on these approximation algorithms, some efficient algorithms are presented and numerical results are reported to show the efficiency of our proposed algorithms.