Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
A method for designing an X-ray flatness filter for medical electron linac is developed. It is used in the optimization process in the electron beam radiation system. Monte Carlo simulation method is used and two exam...A method for designing an X-ray flatness filter for medical electron linac is developed. It is used in the optimization process in the electron beam radiation system. Monte Carlo simulation method is used and two examples of real radiation system optimization processes for China-made medical electron linac are provided: 15 MV X- ray system of BJ-20 linac, and 12 MeV electron system of BJ-14. Results are verified by using the traditional method.展开更多
The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationsh...The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation展开更多
Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed t...Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail.The computational results of the electron number density, which is in the order of 1023 m-3,show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.展开更多
A high-intensity continuous-wave(CW) radio frequency quadrupole(RFQ) accelerator is designed for boron neutron capture therapy.The transmission efficiency of a 20-mA proton beam accelerated from 30 keV to 2.5 MeV can ...A high-intensity continuous-wave(CW) radio frequency quadrupole(RFQ) accelerator is designed for boron neutron capture therapy.The transmission efficiency of a 20-mA proton beam accelerated from 30 keV to 2.5 MeV can reach 98.7% at an operating frequency of 200 MHz.The beam dynamics have a good tolerance to errors.By comparing the high-frequency parameters of quadrilateral and octagonal RFQ cross sections,the quadrilateral structure of the four-vane cavity is selected owing to its multiple advantages,such as a smaller cross section at the same frequency and easy processing.In addition,tuners and undercuts are designed to tune the frequency of the cavity and achieve a flat electric field distribution along the cavity.In this paper,the beam dynamic simulation and electromagnetic design are presented in detail.展开更多
Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vor...Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.展开更多
In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found tha...In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found that the MDS not only quickly assesses the long-term reliability of solder joints within days,but can also mimic similar failure mechanisms in accelerated thermal cycling (ATC) tests. Based on the MDS and ATC reliability experiments,the acceleration factors (AF) were obtained for different reliability testing conditions.Furthermore,by using the creep constitutive relation and fatigue life model developed in part I,a numerical approach was established for the purpose of virtual life prediction of solder joints. The simulation results were found to be in good agreement with the test results from the MDS.As a result,a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of plastic BGA assembly.展开更多
During 2018 major geomagnetic storm,relativistic electron enhancements in extremely low L-shell regions(reaching L∼3)have been reported based on observations of ZH-1 and Van Allen probes satellites,and the storm is h...During 2018 major geomagnetic storm,relativistic electron enhancements in extremely low L-shell regions(reaching L∼3)have been reported based on observations of ZH-1 and Van Allen probes satellites,and the storm is highly likely to be accelerated by strong whistler-mode waves occurring near very low L-shell regions where the plasmapause was suppressed.It is very interesting to observe the intense chorus-accelerated electrons locating in such low L-shells and filling into the slot region.In this paper,we further perform numerical simulation by solving the two-dimensional Fokker-Planck equation based on the bounce-averaged diffusion rates.Numerical results demonstrate the evolution processes of the chorus-driven electron flux and confirm the flux enhancement in low pitch angle ranges(20◦-50◦)after the wave-particle interaction for tens of hours.The simulation result is consistent with the observation of potential butterfly pitch angle distributions of relativistic electrons from both ZH-1 and Van Allen probes.展开更多
Under the assumption of considering the gravity and without gravity, two different acceleration models to describe particle’ motion in the gas flow are formulated, respectively. The corresponding numerical simulation...Under the assumption of considering the gravity and without gravity, two different acceleration models to describe particle’ motion in the gas flow are formulated, respectively. The corresponding numerical simulations of these models do not only show the trend of the velocity of the particle in different density and particle diameter sizes, but also the relationship between the maximum particle velocity and its diameter size.展开更多
We report the results of protein folding (219M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures,...We report the results of protein folding (219M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures, these proteins successfully fold to the native structure in a lO0-ns aMD simulation. In contrast, they are failed under the traditional MD simulation in the same simulation time. Then we find that the lowest root mean square deviations of helix structures from the native structures are 0.36 A, 0.63 A, 0.52 A, 1.1 A and 0.78 A. What is more, native contacts, cluster and free energy analyses show that the results of the aMD method are in accordance with the experiment very well. All analyses show that the aMD can accelerate the simulation process, thus we may apply it to the field of computer aided drug designs.展开更多
Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment s...Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.展开更多
Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of th...Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of the pump wave, while the forward stimulated Raman scattering (F-SRS) subsequently develops and is located at the rear part of the slab. Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities. The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities. The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.展开更多
Particle accelerators play an important role in a wide range of scientific discoveries and industrial applications. The self-consistent multi-particle simulation based on the particle-in-cell (PIC) method has been use...Particle accelerators play an important role in a wide range of scientific discoveries and industrial applications. The self-consistent multi-particle simulation based on the particle-in-cell (PIC) method has been used to study charged particle beam dynamics inside those accelerators. However, the PIC simulation is time-consuming and needs to use modern parallel computers for high-resolution applications. In this paper, we implemented a parallel beam dynamics PIC code on multi-node hybrid architecture computers with multiple Graphics Processing Units (GPUs). We used two methods to parallelize the PIC code on multiple GPUs and observed that the replication method is a better choice for moderate problem size and current computer hardware while the domain decomposition method might be a better choice for large problem size and more advanced computer hardware that allows direct communications among multiple GPUs. Using the multi-node hybrid architectures at Oak Ridge Leadership Computing Facility (OLCF), the optimized GPU PIC code achieves a reasonable parallel performance and scales up to 64 GPUs with 16 million particles.展开更多
The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend it...The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend its capability, a new fourth-order target tracker called α-β-γ-δ filter is proposed. The main objective of this study was to find the optimal set of filter parameters that leads to minimum position tracking errors. The tracking errors between using the α-β-γ-δ filter and the α-β-γ-δ filter are compared. As a result, the new filter exhibits significant improvement in position tracking accuracy over the existing third-order filter, but at the expense of computational time in search of the optimal filter. To reduce the computational time, a simulation-based optimization technique via Taguchi method is introduced.展开更多
The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also ...The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.展开更多
Laser Wakefield is produced by ultra-high intensity laser pulse interacting with underdense plasma with special conditions for the laser wavelength and plasma density. In this mechanism, nonlinear forces appear due to...Laser Wakefield is produced by ultra-high intensity laser pulse interacting with underdense plasma with special conditions for the laser wavelength and plasma density. In this mechanism, nonlinear forces appear due to the very high amplitudes of the electromagnetic wave and these forces evacuate plasma electrons from the path of the laser pulse leading to very high electron plasma density gradients. Due to the electrostatic forces which result from these density perturbations, the electrons move very fast in oscillatory manner to restore neutrality creating a wake of electron density perturbations behind the laser pulse. Detailed investigation has been dealt with the time-delay between the driver laser pulse and the probe pulse which can affect the production of high plasma gradients needed for photon acceleration process.展开更多
According to formula we can simulate their driven force and acceleration on the slope.The mechanical formula is used to obtain force and theoretical dynamics in the slope.The driven force decreases when rotation incre...According to formula we can simulate their driven force and acceleration on the slope.The mechanical formula is used to obtain force and theoretical dynamics in the slope.The driven force decreases when rotation increases.When power increases the acceleration increases.it reduces when its weight raises.It is found that the a will decrease as slope becomes high from 5 to 11°to 22°,which fit the formula too.Meantime as the radius is high from 0.3m to 0.4m to 0.47m a will be low.The needed force will increase as the slope decline becomes big at the same power.展开更多
According to formula we can simulate their driven force and acceleration.The mechanical formula is used to obtain dynamics is used to simulate.The driven force increases when torque increases and tire diameter decreas...According to formula we can simulate their driven force and acceleration.The mechanical formula is used to obtain dynamics is used to simulate.The driven force increases when torque increases and tire diameter decreases.We need torque to increase so this is our plan.Acceleration raises when torque raises and it reduces when its weight raises.With the decreasing of radius of road the centripetal acceleration is increasing in the condition of light vehicle.It is that it decreases sluggishly before 0.35m/s2 then it maintains a steep decline to 0.62m/s2 and at last becomes sluggish again.It is valued that the economical efficiency about consumed fuel under different power.In the time of 0.2hr the fuel inflamer inclines sharply first then turns stable.It is the smallest value.Beyond it the fuel maintains a high value all the time.The discharged pollution gas decreases with the decreasing initial temperature.The low initial temperature is good to fuel gas.Meantime the smallest incline range is 300~350K which explains that it is the most save one.展开更多
An electrostatic accelerating column was designed and fabricated by Lanzhou University for an intense DT/D-D neutron generator. In order to achieve a neutron yield of 5.0 × 10^(12)n/s, a deuteron beam of 30 mA,ac...An electrostatic accelerating column was designed and fabricated by Lanzhou University for an intense DT/D-D neutron generator. In order to achieve a neutron yield of 5.0 × 10^(12)n/s, a deuteron beam of 30 mA,accelerated to 400 kV, and transported in the electrostatic accelerating column smoothly are required. One particle-in-cell code BEAMPATH was used to simulate the beam transport, and the IONB 1.0 code was used to simulate the intense beam envelopes. Emittance growths due to space charge effect and spherical aberration were analyzed. The simulation results show that the accelerating column can transport deuteron beam of 30 mA smoothly and the requirement for the neutron generator is satisfied.展开更多
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
基金Supported by the National Natural Science Foundation of China (60672104,10675013)the Na-tional Basic Research Program of China ("973"Program)(2006CB705705)+1 种基金the 10th Five-Year Plan of the Ministry of Science and Technology of China(2001BA706B-05)the Joint Research Foundation of Beijing Municipal Commissionof Education~~
文摘A method for designing an X-ray flatness filter for medical electron linac is developed. It is used in the optimization process in the electron beam radiation system. Monte Carlo simulation method is used and two examples of real radiation system optimization processes for China-made medical electron linac are provided: 15 MV X- ray system of BJ-20 linac, and 12 MeV electron system of BJ-14. Results are verified by using the traditional method.
基金Project (2012CB722805) supported by the National Basic Research Program of ChinaProjects (50974083, 51174131) supported by the National Natural Science Foundation of China+1 种基金Project (50774112) supported by the Joint Fund of NSFC and Baosteel, ChinaProject(07QA4021) supported by the Shanghai "Phosphor" Science Foundation, China
文摘The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation
基金supported by National Natural Science Foundation of China (Grant No. 11602016)
文摘Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail.The computational results of the electron number density, which is in the order of 1023 m-3,show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.
基金supported by the National Natural Science Foundation of China(Nos.11535016,11675236,12075296,11775284)。
文摘A high-intensity continuous-wave(CW) radio frequency quadrupole(RFQ) accelerator is designed for boron neutron capture therapy.The transmission efficiency of a 20-mA proton beam accelerated from 30 keV to 2.5 MeV can reach 98.7% at an operating frequency of 200 MHz.The beam dynamics have a good tolerance to errors.By comparing the high-frequency parameters of quadrilateral and octagonal RFQ cross sections,the quadrilateral structure of the four-vane cavity is selected owing to its multiple advantages,such as a smaller cross section at the same frequency and easy processing.In addition,tuners and undercuts are designed to tune the frequency of the cavity and achieve a flat electric field distribution along the cavity.In this paper,the beam dynamic simulation and electromagnetic design are presented in detail.
基金financially supported by the National Natural Science Foundation of China(Grant No.51509045)
文摘Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.
基金The project supported by the National Natural Science Foundation of China (59705008)
文摘In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found that the MDS not only quickly assesses the long-term reliability of solder joints within days,but can also mimic similar failure mechanisms in accelerated thermal cycling (ATC) tests. Based on the MDS and ATC reliability experiments,the acceleration factors (AF) were obtained for different reliability testing conditions.Furthermore,by using the creep constitutive relation and fatigue life model developed in part I,a numerical approach was established for the purpose of virtual life prediction of solder joints. The simulation results were found to be in good agreement with the test results from the MDS.As a result,a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of plastic BGA assembly.
基金supported by the National Natural Science Foundation of China(Grant Nos.41904149 and 12173038)Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(Grant No.A132001W07)the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant No.2021-JBKY-11).
文摘During 2018 major geomagnetic storm,relativistic electron enhancements in extremely low L-shell regions(reaching L∼3)have been reported based on observations of ZH-1 and Van Allen probes satellites,and the storm is highly likely to be accelerated by strong whistler-mode waves occurring near very low L-shell regions where the plasmapause was suppressed.It is very interesting to observe the intense chorus-accelerated electrons locating in such low L-shells and filling into the slot region.In this paper,we further perform numerical simulation by solving the two-dimensional Fokker-Planck equation based on the bounce-averaged diffusion rates.Numerical results demonstrate the evolution processes of the chorus-driven electron flux and confirm the flux enhancement in low pitch angle ranges(20◦-50◦)after the wave-particle interaction for tens of hours.The simulation result is consistent with the observation of potential butterfly pitch angle distributions of relativistic electrons from both ZH-1 and Van Allen probes.
文摘Under the assumption of considering the gravity and without gravity, two different acceleration models to describe particle’ motion in the gas flow are formulated, respectively. The corresponding numerical simulations of these models do not only show the trend of the velocity of the particle in different density and particle diameter sizes, but also the relationship between the maximum particle velocity and its diameter size.
基金Supported by the National Natural Science Foundation of China under Grant Nos 31200545,11274206 and 11574184
文摘We report the results of protein folding (219M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures, these proteins successfully fold to the native structure in a lO0-ns aMD simulation. In contrast, they are failed under the traditional MD simulation in the same simulation time. Then we find that the lowest root mean square deviations of helix structures from the native structures are 0.36 A, 0.63 A, 0.52 A, 1.1 A and 0.78 A. What is more, native contacts, cluster and free energy analyses show that the results of the aMD method are in accordance with the experiment very well. All analyses show that the aMD can accelerate the simulation process, thus we may apply it to the field of computer aided drug designs.
基金supported by the Ministry of Science and Technology of China(2006BAJ04A01 and 2006BAJ03A04-01)
文摘Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.
基金supported by National High Technology ICF Committee in Chinathe National Natural Science Fund of China(Nos.10675024,10335020,10375011 and 10576007)the Laboratory of Computational Physics(No.51479050205ZW0905)
文摘Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of the pump wave, while the forward stimulated Raman scattering (F-SRS) subsequently develops and is located at the rear part of the slab. Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities. The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities. The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.
文摘Particle accelerators play an important role in a wide range of scientific discoveries and industrial applications. The self-consistent multi-particle simulation based on the particle-in-cell (PIC) method has been used to study charged particle beam dynamics inside those accelerators. However, the PIC simulation is time-consuming and needs to use modern parallel computers for high-resolution applications. In this paper, we implemented a parallel beam dynamics PIC code on multi-node hybrid architecture computers with multiple Graphics Processing Units (GPUs). We used two methods to parallelize the PIC code on multiple GPUs and observed that the replication method is a better choice for moderate problem size and current computer hardware while the domain decomposition method might be a better choice for large problem size and more advanced computer hardware that allows direct communications among multiple GPUs. Using the multi-node hybrid architectures at Oak Ridge Leadership Computing Facility (OLCF), the optimized GPU PIC code achieves a reasonable parallel performance and scales up to 64 GPUs with 16 million particles.
文摘The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend its capability, a new fourth-order target tracker called α-β-γ-δ filter is proposed. The main objective of this study was to find the optimal set of filter parameters that leads to minimum position tracking errors. The tracking errors between using the α-β-γ-δ filter and the α-β-γ-δ filter are compared. As a result, the new filter exhibits significant improvement in position tracking accuracy over the existing third-order filter, but at the expense of computational time in search of the optimal filter. To reduce the computational time, a simulation-based optimization technique via Taguchi method is introduced.
文摘The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.
文摘Laser Wakefield is produced by ultra-high intensity laser pulse interacting with underdense plasma with special conditions for the laser wavelength and plasma density. In this mechanism, nonlinear forces appear due to the very high amplitudes of the electromagnetic wave and these forces evacuate plasma electrons from the path of the laser pulse leading to very high electron plasma density gradients. Due to the electrostatic forces which result from these density perturbations, the electrons move very fast in oscillatory manner to restore neutrality creating a wake of electron density perturbations behind the laser pulse. Detailed investigation has been dealt with the time-delay between the driver laser pulse and the probe pulse which can affect the production of high plasma gradients needed for photon acceleration process.
文摘According to formula we can simulate their driven force and acceleration on the slope.The mechanical formula is used to obtain force and theoretical dynamics in the slope.The driven force decreases when rotation increases.When power increases the acceleration increases.it reduces when its weight raises.It is found that the a will decrease as slope becomes high from 5 to 11°to 22°,which fit the formula too.Meantime as the radius is high from 0.3m to 0.4m to 0.47m a will be low.The needed force will increase as the slope decline becomes big at the same power.
文摘According to formula we can simulate their driven force and acceleration.The mechanical formula is used to obtain dynamics is used to simulate.The driven force increases when torque increases and tire diameter decreases.We need torque to increase so this is our plan.Acceleration raises when torque raises and it reduces when its weight raises.With the decreasing of radius of road the centripetal acceleration is increasing in the condition of light vehicle.It is that it decreases sluggishly before 0.35m/s2 then it maintains a steep decline to 0.62m/s2 and at last becomes sluggish again.It is valued that the economical efficiency about consumed fuel under different power.In the time of 0.2hr the fuel inflamer inclines sharply first then turns stable.It is the smallest value.Beyond it the fuel maintains a high value all the time.The discharged pollution gas decreases with the decreasing initial temperature.The low initial temperature is good to fuel gas.Meantime the smallest incline range is 300~350K which explains that it is the most save one.
基金Supported by the National Nature Science Foundation of China(Nos.11027508 and 21327801)Ministry of Sciences and Technology of China(No.2013YQ040861)Fundamental Research Funds for the Central Universities(No.lzujbky-2015-bt07)
文摘An electrostatic accelerating column was designed and fabricated by Lanzhou University for an intense DT/D-D neutron generator. In order to achieve a neutron yield of 5.0 × 10^(12)n/s, a deuteron beam of 30 mA,accelerated to 400 kV, and transported in the electrostatic accelerating column smoothly are required. One particle-in-cell code BEAMPATH was used to simulate the beam transport, and the IONB 1.0 code was used to simulate the intense beam envelopes. Emittance growths due to space charge effect and spherical aberration were analyzed. The simulation results show that the accelerating column can transport deuteron beam of 30 mA smoothly and the requirement for the neutron generator is satisfied.