期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Preparation and characterization of LiAl_xMn_(2-x)O_4 for a supercapacitor in aqueous electrolyte 被引量:1
1
作者 Yun Xue Ye Chen Mi-lin Zhang Yong-de Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期112-118,共7页
LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The re... LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2-xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L^-1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2-xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g^-1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2-xO4 with x=0.1 is only about 14% after 100 cycles. 展开更多
关键词 SUPERCAPACITOR electrode materials aqueous electrolyte SPINEL
下载PDF
Implementation of a choline bis(trifluoromethylsulfonyl)imide aqueous electrolyte for low temperature EDLCs enabled by a cosolvent
2
作者 Zhuanpei Wang Francois Béguin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期84-94,I0004,共12页
We report a carbon/carbon capacitor based on micro/mesoporous carbon electrodes with cost-effective and eco-friendly aqueous choline bis(trifluoromethylsulfonyl)imide(Ch TFSI)electrolyte with a cosolvent enabling low-... We report a carbon/carbon capacitor based on micro/mesoporous carbon electrodes with cost-effective and eco-friendly aqueous choline bis(trifluoromethylsulfonyl)imide(Ch TFSI)electrolyte with a cosolvent enabling low-temperature operation down to-30℃.For this purpose,a Mg O-templated hierarchical carbon(MP98B)with an average mesopore diameter of 3.5 nm was prepared by pyrolysis of magnesium citrate hydrate at 900℃.To reach lower temperatures,the melting point and viscosity of the aqueous electrolyte were reduced by mixing water(W)with an organic solvent(methanol,M,or isopropanol,I)of high dielectric constant and low viscosity.5 mol kg^(-1)(5 m)Ch TFSI in an optimized volume fraction of cosolvent,M_(0.75)W_(0.25),and I_(0.75)W_(0.25),showed the highest conductivity;the higher conductivity in M_(0.75)W_(0.25)(22.8 and 3.1 m S cm^(-1) at 20 and-30℃,respectively)than in I_(0.75)W_(0.25)(8.5 and0.5 m S cm^(-1)at 20 and-30℃,respectively)is attributed to the lower viscosity of the M_(0.75)W_(0.25)solution.The electrochemical stability window(ESW)of 5 m Ch TFSI in M_(0.75)W_(0.25)and I_(0.75)W_(0.25)(1.6 V)on an MP98B electrode was determined by applying the S-method.Meanwhile,by adjusting the mass ratio of the two electrodes,a MP98B/MP98B capacitor using the 5 m electrolyte in M_(0.75)W_(0.25)could operate with a good life span up to 1.6 V while exhibiting a better charge propagation,greater specific capacitance,and higher specific energy than in I_(0.75)W_(0.25). 展开更多
关键词 Carbon/carbon capacitor Choline bis(trifluoromethylsulfonyl)imide Low-temperature aqueous electrolyte Cosolvent electrolyte Methanol ISOPROPANOL
下载PDF
A Novel Application of Lithium Heteropoly Blue as Non-aqueous Electrolyte in Polyacenic Semiconductor-Li Secondary Batteries
3
作者 WANG Xiu-li +2 位作者 XIN Ming-hong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第1期10-14,共5页
Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secon... Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secondary battery, especially the effect of Li 5PW Ⅵ 10 W Ⅴ 2O 40 on the capacity, the cycle property and the self discharging of the battery have been investigated. The results indicate that not only Li 5PW Ⅵ 10 W Ⅴ 2O 40 can overcome the disadvantages of LiClO 4, which is apt to explode when heated or rammed, but also the PAS Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self discharging than that assembled with LiClO 4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application. 展开更多
关键词 Lithium heteropoly blue Non aqueous electrolyte Polyacenic semiconductor Secondary battery
下载PDF
Redox Charge Transfer Kinetics and Reversibility of VO_(2) in Aqueous and Non-Aqueous Electrolytes of Na-Ion Storage
4
作者 Sul Ki Park Kang Ho Shin +2 位作者 Puritut Nakhanivej Harpalsinh H.Rana Ho Seok Park 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1222-1228,共7页
The deep understanding about the electrochemical behavior of the nanostructured electrode in electrolytes provides crucial insights for the rational design of electrode for sodium(Na)-ion storage system(NIS).Here,we r... The deep understanding about the electrochemical behavior of the nanostructured electrode in electrolytes provides crucial insights for the rational design of electrode for sodium(Na)-ion storage system(NIS).Here,we report redox charge transfer kinetics and reversibility of VO_(2)(B) nanorod electrodes in both aqueous and organic electrolytes for NIS.The assynthesized VO_(2)(B) nanorods show the reversible redox reaction with the higher specific and rate capacitances at high current density in aqueous electrolytes than in organic electrolytes.Temperature-dependent impedance measurements demonstrate the more facile interfacial charge transfer of Na ions into VO_(2)(B) nanorods in aqueous electrolytes.The reversible evolution in oxidation state and chemical composition of VO_(2)(B) nanorods is observed in aqueous electrolytes,as confirmed by ex situ XRD and ex situ X-ray photoelectron spectroscopy analyses.Given by the facile and reversible pseudocapacitive feature,the electrochemical performances of VO_(2)(B) nanorods are further improved by constructing the hierarchical structure of the reduced graphene oxide-VO_(2) composite for aqueous Na+ion storage. 展开更多
关键词 aqueous electrolyte energy storage mechanism hierarchical structure nanorod sodium ion storage
下载PDF
Solvation Structure and Dynamics of Mg(TFSI)_(2) Aqueous Electrolyte
5
作者 Zhou Yu Taylor R.Juran +8 位作者 Xinyi Liu Kee Sung Han Hui Wang Karl T.Mueller Lin Ma Kang Xu Tao Li Larry A.Curtiss Lei Cheng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期295-304,共10页
Using ab initio molecular dynamics(AIMD)simulations,classical molecular dynamics(CMD)simulations,small-angle X-ray scattering(SAXS),and pulsed-field gradient nuclear magnetic resonance(PFG-NMR),the solvation structure... Using ab initio molecular dynamics(AIMD)simulations,classical molecular dynamics(CMD)simulations,small-angle X-ray scattering(SAXS),and pulsed-field gradient nuclear magnetic resonance(PFG-NMR),the solvation structure and ion dynamics of magnesium bis(trifluoromethanesulfonyl)imide(Mg(TFSI)_(2))aqueous electrolyte at 1,2,and 3 m concentrations are investigated.From AIMD and CMD simulations,the first solvation shell of an Mg;ion is found to be composed of six water molecules in an octahedral configuration and the solvation shell is rather rigid.The TFSI^(-)ions prefer to stay in the second solvation shell and beyond.Meanwhile,the comparable diffusion coefficients of positive and negative ions in Mg(TFSI)_(2)aqueous electrolytes have been observed,which is mainly due to the formation of the stable[Mg(H_(2)O_(6))_(2)]^(+)complex,and,as a result,the increased effective Mg ion size.Finally,the calculated correlated transference numbers are lower than the uncorrelated ones even at the low concentration of 2 and 3 m,suggesting the enhanced correlations between ions in the multivalent electrolytes.This work provides a molecular-level understanding of how the solvation structure and multivalency of the ion affect the dynamics and transport properties of the multivalent electrolyte,providing insight for rational designs of electrolytes for improved ion transport properties. 展开更多
关键词 Mg(TFSI)_(2)aqueous electrolyte molecular dynamics simulation pulsed-field gradient nuclear magnetic resonance small-angle X-ray scattering ion dynamics
下载PDF
Simple Rational Model for Discharge of Batteries with Aqueous Electrolytes, Based on Nernst Equation
6
作者 Panagis G. Papadopoulos Christopher G. Koutitas +2 位作者 Christos G. Karayannis Panos D. Kiousis Yannis N. Dimitropoulos 《Open Journal of Physical Chemistry》 2021年第1期1-11,共11页
A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the batter... A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the battery are considered. A simple algorithm, with variable time step-length <span style="font-family:Verdana;">Δ</span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">, is presented, for proposed model. The model is first applied to Daniel cell, in order to clar</span><span style="font-family:Verdana;">ify</span><span style="font-family:""><span style="font-family:Verdana;"> concepts and principles of battery operation. It is found that initial pinching, in time-history curve of voltage </span><i><span style="font-family:Verdana;">E-t</span></i><span style="font-family:Verdana;">, is due to initial under-concentration of product ion. Then, model is applied </span></span><span style="font-family:Verdana;">to</span><span> a lead-acid battery. In absence of an ion product, and in order to construct nominator of Nernst ratio, such an ion, with coefficient tending to zero, is assumed, thus yielding unity in nominator. Time-history curves of voltage, for various values of internal resistance, are compared with corresponding published experimental curves. Temperature effect on voltage-time curve is examined. Proposed model can be extended to other types of batteries, which can be considered as having aqueous electrolytes, too.</span> 展开更多
关键词 BATTERY aqueous electrolyte DISCHARGE Nernst Equation Daniel Cell Lead-Acid Battery Temperature Effect
下载PDF
Electrochemical Behavior of Vanadium Carbide in Neutral Aqueous Electrolytes
7
作者 陈超凡 庞迪 +3 位作者 王晓彤 陈岗 杜菲 高宇 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第5期143-147,共5页
The V_2C compound,belonging to the group of two-dimensional transition metal carbonitrides,or MXenes,has demonstrated a promising electrochemical performance in capacitor applications in acidic electrolytes;however,th... The V_2C compound,belonging to the group of two-dimensional transition metal carbonitrides,or MXenes,has demonstrated a promising electrochemical performance in capacitor applications in acidic electrolytes;however,there is evidence to suggest that V_2C is unstable in an acidic environment.On the other hand,the performance of V_2C in neutral aqueous electrolytes is still moderate,and has not yet been systematically studied.The charge storage mechanism in a V_2C electrode,employed in neutral aqueous electrolytes,is investigated via cyclic voltammetry testing and in situ x-ray diffraction(XRD).Good specific capacitances are achieved,specifically208 F/g in 0.5 M Li_2SO_4,225 F/g in 1 M MgSO_4,120 F/g in 1 M Na_2 SO_4,and 104 F/g in 0.5 M K_2SO_4.Using in situ XRD,we observe that,during the charge and discharge process,the c-lattice parameter shrinks or expands by up to 0.25 A in MgSO_4,and 0.29 A in Li_2SO_4 which demonstrates the intercalation/de-intercalation of cations into the d-V_2C layer. 展开更多
关键词 Electrochemical Behavior of Vanadium Carbide in Neutral aqueous electrolytes
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:1
8
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) aqueous electrolyte Gel electrolyte Electrochemical stability window Li dendrite
下载PDF
An overview of deep eutectic solvents:Alternative for organic electrolytes,aqueous systems&ionic liquids for electrochemical energy storage 被引量:1
9
作者 Akshay Sharma Renuka Sharma +1 位作者 Ramesh C.Thakur Lakhveer Singh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期592-626,I0013,共36页
As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovativ... As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovative solutions must be explored.This review examines the deep eutectic solvents(DESs)as a green,safe,and affordable solution for the electrochemical energy storage and conversion field,offering tremendous opportunities and a promising future.DESs are a class of environment-friendly solvents known for their low toxicity and unique properties,such as their good conductivity,high thermal stability,and nonflammability.This review explores the fundamentals,preparations,and various interactions that often predominate in the formation of DESs,the properties of DESs,and how DESs are better than traditional solvents involving cost-ineffective and unsafe organic electrolytes and ionic liquids as well as inefficient aqueous systems due to low energy density for electrochemical energy storage applications.Then,a particular focus is placed on the various electrochemical applications of DESs,including their role in the electrolytes in batteries/supercapacitors,electropolishing and electrodeposition of metals,synthesis of electrode materials,recycling of electrodes,and their potential for use in CO_(2)capture.The review concludes by exploring the challenges,research gaps,and future potential of DESs in electrochemical applications,providing a comprehensive overview,and highlighting key considerations for their design and use. 展开更多
关键词 Deep eutectic solvent Green solventHole theory Energy storage devices aqueous electrolyte
下载PDF
Paper-based aqueous Al ion battery with water-in-salt electrolyte
10
作者 Yifei Wang Wending Pan +4 位作者 Kee Wah Leong Yingguang Zhang Xiaolong Zhao Shijing Luo Dennis Y.C.Leung 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1380-1388,共9页
Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a fl... Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a flexible aqueous Al ion battery is developed using cellulose paper as substrate.The water-in-salt electrolyte is stored inside the paper,while the electrodes are either printed or attached on the paper surface,leading to a lightweight and thin-film battery prototype.Currently,this battery can tolerate a charge and discharge rate as high as 4 A g^(-1) without losing its storage capacity.The charge voltage is around 2.2 V,while the discharge plateau of 1.6–1.8 V is among the highest in reported aqueous Al ion batteries,together with a high discharge specific capacity of~140 mAh g^(-1).However,due to the water electrolysis side reaction,the faradaic efficiency can only reach 85%with a cycle life of 250 due to the dry out of electrolyte.Benefited from using flexible materials and aqueous electrolyte,this paper-based Al ion battery can tolerate various deformations such as bending,rolling and even puncturing without losing its performance.When two single cells are connected in series,the battery pack can provide a charge voltage of 4.3 V and a discharge plateau as high as 3–3.6 V,which are very close to commercial Li ion batteries.Such a cheap,flexible and safe battery technology may be widely applied in low-cost and large-quantity applications,such as RFID tags,smart packages and wearable biosensors in the future. 展开更多
关键词 Al ion battery aqueous electrolyte Water-in-salt Paper battery Flexible battery
下载PDF
Manipulating Zn^(2+)solvation environment in poly(propylene glycol)-based aqueous Li^(+)/Zn^(2+)electrolytes for high-voltage hybrid ion batteries
11
作者 Hang Lu Sheng Zheng +2 位作者 Lu Wei Xiaodong Zhang Xin Guo 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期125-136,共12页
Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and en... Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries. 展开更多
关键词 high voltage aqueous electrolyte hybrid ion battery molecular interaction poly(propylene glycol) zinc metal anode
下载PDF
An Electrochemical Perspective of Aqueous Zinc Metal Anode
12
作者 Huibo Yan Songmei Li +1 位作者 Jinyan Zhong Bin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期274-312,共39页
Based on the attributes of nonflammability,environmental benignity,and cost-effectiveness of aqueous electrolytes,as well as the favorable compatibility of zinc metal with them,aqueous zinc ions batteries(AZIBs)become... Based on the attributes of nonflammability,environmental benignity,and cost-effectiveness of aqueous electrolytes,as well as the favorable compatibility of zinc metal with them,aqueous zinc ions batteries(AZIBs)become the leading energy storage candidate to meet the requirements of safety and low cost.Yet,aqueous electrolytes,acting as a double-edged sword,also play a negative role by directly or indirectly causing various parasitic reactions at the zinc anode side.These reactions include hydrogen evolution reaction,passivation,and dendrites,resulting in poor Coulombic efficiency and short lifespan of AZIBs.A comprehensive review of aqueous electrolytes chemistry,zinc chemistry,mechanism and chemistry of parasitic reactions,and their relationship is lacking.Moreover,the understanding of strategies for suppressing parasitic reactions from an electrochemical perspective is not profound enough.In this review,firstly,the chemistry of electrolytes,zinc anodes,and parasitic reactions and their relationship in AZIBs are deeply disclosed.Subsequently,the strategies for suppressing parasitic reactions from the perspective of enhancing the inherent thermodynamic stability of electrolytes and anodes,and lowering the dynamics of parasitic reactions at Zn/electrolyte interfaces are reviewed.Lastly,the perspectives on the future development direction of aqueous electrolytes,zinc anodes,and Zn/electrolyte interfaces are presented. 展开更多
关键词 aqueous zinc ions batteries Parasitic reactions aqueous electrolyte Zinc anode
下载PDF
A Molecular-Sieving Interphase Towards Low-Concentrated Aqueous Sodium-Ion Batteries
13
作者 Tingting Liu Han Wu +7 位作者 Hao Wang Yiran Jiao Xiaofan Du Jinzhi Wang Guangying Fu Yaojian Zhang Jingwen Zhao Guanglei Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期51-63,共13页
Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organi... Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organic-hybridized electrolyte designs,however,at the expense of cost and safety.Here,we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer.The as-formed composite interphase exhibits a molecularsieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix,which enables high rejection of hydrated Na^(+)ions while allowing fast dehydrated Na^(+)permeance.Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg^(-1) sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na_(2)MnFe(CN)_(6)//NaTi_(2)(PO_(4))_(3) full cells with an unprecedented cycling stability of 94.9%capacity retention after 200 cycles at 1 C.Combined with emerging electrolyte modifications,this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs. 展开更多
关键词 Molecular sieving effect Electrode coatings aqueous sodium ion batteries Dilute aqueous electrolytes
下载PDF
An aqueous magnesium-ion hybrid supercapacitor operated at-50℃
14
作者 Guoshen Yang Gangrui Qu +7 位作者 Chi Fang Jie Deng Xianqi Xu Yinghao Xie Tian Sun Yachao Zhu Jiaxin Zheng Hang Zhou 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期702-712,共11页
The recent advances in aqueous magnesium-ion hybrid supercapacitor(MHSC)have attracted great attention as it brings together the benefits of high energy density,high power density,and synchronously addresses cost and ... The recent advances in aqueous magnesium-ion hybrid supercapacitor(MHSC)have attracted great attention as it brings together the benefits of high energy density,high power density,and synchronously addresses cost and safety issues.However,the freeze of aqueous electrolytes discourages aqueous MHSC from operating at low-temperature conditions.Here,a low-concentration aqueous solution of 4 mol L^(-1) Mg(ClO_(4))_(2) is devised for its low freezing point(-67℃)and ultra-high ionic conductivity(3.37 mS cm^(-1) at-50℃).Both physical characterizations and computational simulations revealed that the Mg(ClO_(4))_(2) can effectively disrupt the original hydrogen bond network among water molecules via transmuting the electrolyte structure,thus yielding a low freezing point.Thus,the Mg(ClO_(4))_(2) electrolytes endue aqueous MHSC with a wider temperature operation range(-50℃–25℃)and a higher energy density of 103.9 Wh kg^(-1) at 3.68 kW kg^(-1) over commonly used magnesium salts(i.e.,MgSO_(4) and Mg(NO_(3))_(2))electrolytes.Furthermore,a quasi-solid-state MHSC based on polyacrylamide-based hydrogel electrolyte holds superior low-temperature performance,excellentflexibility,and high safety.This work pioneers a convenient,cheap,and eco-friendly tactic to procure low-temperature aqueous magnesium-ion energy storage device. 展开更多
关键词 Low-concentration aqueous electrolyte Anti-freezing property Magnesium-ion hybrid supercapacitor High energy density
下载PDF
Study of the Relationship Between New Ionic Interaction Parameters and Salt Solubility in Electrolyte Solutions Based on Molecular Dynamics Simulation
15
作者 SUN Wenting HU Yangdong +5 位作者 ZHENG Jiahuan SUN Qichao Chen Xia DING Jiakun ZHANG Weitao WU Lianying 《Journal of Ocean University of China》 CAS CSCD 2024年第2期467-476,共10页
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is... Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions. 展开更多
关键词 molecular dynamics simulation interaction distance interaction time rate electrolyte aqueous solutions SOLUBILITY
下载PDF
All-climate aqueous supercapacitor enabled by a deep eutectic solvent electrolyte based on salt hydrate 被引量:2
16
作者 Xudong Bu Yurong Zhang +4 位作者 Yinglun Sun Lijun Su Jianing Meng Xionggang Lu Xingbin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期198-204,共7页
Aqueous supercapacitors(SCs)have received considerable attention owing to the utilization of low-cost,non-flammable,and low-toxicity aqueous electrolytes thus could eliminate the safety and cost concerns,but their wid... Aqueous supercapacitors(SCs)have received considerable attention owing to the utilization of low-cost,non-flammable,and low-toxicity aqueous electrolytes thus could eliminate the safety and cost concerns,but their wide temperature range applications have generally suffered from frozen of electrolyte and insufficient ionic conductivity at low temperatures.Herein,we demonstrate the feasibility of using an unconventional Deep Eutectic Solvent(DES)based on H2O-Mg(ClO4)2·6 H2O binary system as electrolyte to construct all-climate aqueous carbon-based SC.This unconventional class DES completely base on inorganic substances and achieving simply mix inexpensive salts and water together at the right proportions.Attributed to the attractive feature of extremely low freeze temperature of-69℃,this electrolyte can enable the 1.8 V carbon-based SC to fully work at-40℃with outstanding cycling stability.This DES electrolyte comprising of a single salt and a single solvent without any additive will open up an avenue for developing simple and green electrolytes to construct all-climate SC. 展开更多
关键词 Deep eutectic solvent Salt hydrates aqueous supercapacitor aqueous electrolyte All-climate
下载PDF
Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors 被引量:2
17
作者 Hongfei Wang Yijun Zhong +1 位作者 Jiqiang Ning Yong Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3733-3752,共20页
Supercapacitors(SCs) with high power density and long cycling span life are demanding energy storage devices that will be an attractive power solution to modern electronic and electrical applications. Numerous theoret... Supercapacitors(SCs) with high power density and long cycling span life are demanding energy storage devices that will be an attractive power solution to modern electronic and electrical applications. Numerous theoretical and experimental works have been devoted to exploring various possibilities to increase the functionality and the specific capacitance of electrodes for SCs. Non-carbon two-dimensional(2D)materials have been considered as encouraging electrode candidates for their chemical and physical advantages such as tunable surface chemistry, high electronic conductivity, large mechanical strength, more active sites, and dual non-faradaic and faradaic electrochemical performances. Besides, these 2D materials also play particular roles in constructing highway channels for fast ion diffusion. This concise review summarizes cutting-edge progress of some representative 2D non-carbon materials for the aqueous electrolyte-based SCs, including transition metal oxides(TMOs), transition metal hydroxides(TMHs), transition metal chalcogenides(TMCs), MXenes, metal-organic frameworks(MOFs) and some emerging materials. Different synthetic methods, effective structural designs and corresponding electrochemical performances are reviewed in detail. And we finally present a detailed discussion of the current intractable challenges and technical bottlenecks, and highlight future directions and opportunities for the development of next-generation high-performance energy storage devices. 展开更多
关键词 SUPERCAPACITORS 2D non-carbon materials aqueous electrolyte High power density Long cycling span life
原文传递
Design strategies for low temperature aqueous electrolytes 被引量:7
18
作者 Liwei Jiang Dejian Dong Yi-Chun Lu 《Nano Research Energy》 2022年第1期78-89,共12页
Low temperature aqueous batteries(LT-ABs)have attracted extensive attention recent years.The LT-ABs suffer from electrolyte freezing,slow ionic diffusion and sluggish interfacial redox kinetics at low temperature.In t... Low temperature aqueous batteries(LT-ABs)have attracted extensive attention recent years.The LT-ABs suffer from electrolyte freezing,slow ionic diffusion and sluggish interfacial redox kinetics at low temperature.In this review,we discuss physicochemical properties of aqueous electrolytes in terms of phase diagram,ion diffusion and interfacial redox kinetics to guide the design of low temperature aqueous electrolytes(LT-AEs).Firstly,the characteristics of equilibrium and non equilibrium phase diagrams are introduced to analyze the antifreezing mechanisms and propose design strategies for LT-AEs.Then,the temperature/concentration/charge carrier dependence conductivity characteristics in aqueous electrolytes are reviewed to comprehend and regulate the ion diffusion kinetics.Moreover,we introduce interfacial studies in aqueous and non-aqueous batteries and propose potential improvement strategies for interfacial redox kinetics in LT-ABs.Finally,we summarize design strategies of LT-AEs for developing high performance LT-ABs. 展开更多
关键词 aqueous electrolytes low temperature phase diagram ionic diffusion interfacial redox kinetics
原文传递
Issues and rational design of aqueous electrolyte for Zn-ion batteries 被引量:4
19
作者 Qi Zhang Zefang Yang +4 位作者 Huimin Ji Xiaohui Zeng Yougen Tang Dan Sun Haiyan Wang 《SusMat》 2021年第3期432-447,共16页
Aqueous Zn-ion batteries(AZIBs)are regarded as a promising alternative to the widely used lithium-ion batteries in large-scale energy storage systems.The researches on the development of novel aqueous electrolyte to i... Aqueous Zn-ion batteries(AZIBs)are regarded as a promising alternative to the widely used lithium-ion batteries in large-scale energy storage systems.The researches on the development of novel aqueous electrolyte to improve battery performance have also attracted great interest since the electrolyte is a key com-ponent for Zn2+migration between cathode and anode.Herein,we briefly sum-marized and illuminated the recent development tendency of aqueous electrolyte for AZIBs,then deeply analyzed its existing issues(water decomposition,cathode dissolution,corrosion and passivation,and dendrite growth)and discussed the corresponding optimization strategies(pH regulation,concentrated salt solution,electrolyte composition design,and functional additives).The internal mecha-nisms of these strategies were further revealed and the relationships between issues and solutions were clarified,which could guide the future development of aqueous electrolytes for AZIBs. 展开更多
关键词 aqueous electrolyte dendrite growth rational design water decomposition Zn-ion batteries
原文传递
Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes 被引量:3
20
作者 Gengping Jiang Chi Cheng +1 位作者 Dan Li Jefferson Zhe Liu 《Nano Research》 SCIE EI CAS CSCD 2016年第1期174-186,共13页
Electrical double layer (EDL) capacitors based on recently emergent graphene materials have shown several folds performance improvement compared to conventional porous carbon materials, driving a wave of technology ... Electrical double layer (EDL) capacitors based on recently emergent graphene materials have shown several folds performance improvement compared to conventional porous carbon materials, driving a wave of technology breakthrough in portable and renewable energy storage. Accordingly, much interest has been generated to pursue a comprehensive understanding of the fundamental yet elusive double layer structure at file electrode^electrolyte interface. In this paper, we carried out comprehensive molecular dynamics simulations to obtain a com- prehensive picture of how ion type, solvent properties, and charging conditions affect the EDL structure at the graphene electrode surface, and thereby its contribution to capacitance. We show that different symmetrical monovalent aqueous electrolytes M^X- (M~ = Na~, K~, Rb+, and Cs+; X- = F-, CI-, and I ) indeed have distinctive EDL structures. Larger ions, such as, Rb*, Cs*, C1, and I, undergo partial dehydration and penetrate through the first water layer next to the graphene electrode surfaces under charging. As such, the electrical potential distribution through the EDL strongly depends on the ion type. Interestingly, we further reveal that the water can play a critical role in determining the capacitance value. The change of dielectric constant of water in different electrolytes largely cancels out the variance in electric potential drop across the EDL of different ion type. Our simulation sheds new lights on how the interplay between solvent molecules and EDL structure cooperatively contributes to capacitance, which agrees with our experimental results well. 展开更多
关键词 graphene supercapacitor molecular dynamicssimulations electric double layerstructures aqueous electrolyte monovalent ions
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部