Sn coatings were fabricated by mechanical coating technique for the first time. The coatings were characterized by XRD and SEM, among others. The SEM showed that the coatings had an irregular and uneven morphology. Th...Sn coatings were fabricated by mechanical coating technique for the first time. The coatings were characterized by XRD and SEM, among others. The SEM showed that the coatings had an irregular and uneven morphology. The influence of the rotation speed of planetary ball mill on the evolution and formation of the coatings was also investigated. The results indicated that continuous Sn coatings can be formed under a moderate rotation speed. In other words, the coatings cannot be formed when rotation speed was too high or too low. The evolution of the coatings was examined and discussed. The results showed that it followed the universal evolution law of metal coatings which included four stages. However, the exfoliation of the coatings was not seen even the milling time reached 30 h.展开更多
Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopt...Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopted to monitor this process include measurement of coating weight gain,performance of disintegration and dissolution test,etc.However,not only do these methods cause destruction to the samples,but also consume time and energy.There have recently emerged the applications of process analytical technologies(PAT)on film coating,especially some novel spectroscopic and imaging technologies,which have the potential to real-time track the progress in film coating and optimize production efficiency.This article gives an overview on the application of such technologies for film coating,with the goal to provide a reference for the further researches.展开更多
Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19...Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.展开更多
The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharma...The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion(Eudragit~?NE30 D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols.展开更多
Objective of this study was to develope low temperature sol-gel coatings for shape memory metal (NiTi) and evaluate their biocompatibility on NiTi suture material. A series of low temperature TiO2 and TiO2-SiO2 sol-ge...Objective of this study was to develope low temperature sol-gel coatings for shape memory metal (NiTi) and evaluate their biocompatibility on NiTi suture material. A series of low temperature TiO2 and TiO2-SiO2 sol-gel coatings were prepared on glass substrates. The silica content of TiO2-SiO2 coatings ranged from 0 to 30 mol%. The coatings were also prepared with polyethyleneglycol (PEG). The contact angle and photocatalytic activity measurements were used to evaluate the surface properties of the coatings. Stability of the coatings was tested in simulated body fluid (SBF). The TiO2-SiO2 90/10 film made with PEG was more hydrophilic, showed photocatalytic activity and was crack-free after the SBF test, thus it was chosen to animal experiment as a new experimental coating. Uncoated NiTi suture and the suture coated with high temperature TiO2 were used as reference materials. NiTi sutures were inserted subcutaneously on the back of rat for four weeks. In routine histological examinations all materials showed good biocompatibility with mild inflammatory cell reaction. No significant differences in the soft tissue response among the materials were observed. Both the high and new low temperature processed sol-gel coatings remained attached on the sutures confirming the suitability of the coating technique on thin NiTi sutures.展开更多
Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron ...Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron microscope(SEM),energy-dispersive X-ray spectrometry(EDS),X-ray diffractometer(XRD)and Raman spectroscopy.It was shown that the flaky GO randomly distributed in the composite film.Compared with the Mg(OH)_(2)film,the Mg(OH)_(2)/GO composite film exhibited more uniform and compact structure.Potentiodynamic polarization tests revealed that the Mg(OH)_(2)/GO composite film could significantly improve the corrosion resistance of Mg(OH)_(2)film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.展开更多
In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performanc...In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.展开更多
In this work, ZnO thin films were derived by sol-gel using two different techniques;dip coating and spin coating technique. The films were deposited onto glass substrate at room temperature using sol-gel composed from...In this work, ZnO thin films were derived by sol-gel using two different techniques;dip coating and spin coating technique. The films were deposited onto glass substrate at room temperature using sol-gel composed from zinc acetate dehydrate, monoethanolamine, isopropanole, and de-ionized water, the films were preheated at 225?C for 15 min. The crystallographic structures of ZnO films were investigated using X-ray diffraction (XRD);the result shows that the good film was prepared at dip coating technique, it was polycrystalline and highly c-orientation along (002) plane, the lattice constant ratio (c/a) was calculated at (002), it was about 1.56. The structure of thin films, prepared by spin coating technique, was amorphous with low intensity and wide peaks. The optical properties of the prepared film were studied using UV-VIS spectrophotometer with the range 190 - 850 nm, and by using the fluorescence spectrometer. The optical characterization of ZnO thin films that were prepared by the dip coating method have good transmittance of about 92% in the visible region, it can be noted from the fluorescence spectrometer two broad visible emission bands centered at 380nm and 430 nm. The optical energy gaps for the direct and indirect allowed transitions were calculated, the values were equal 3.2 eV and 3.1 eV respectively. Dip coating technique create ZnO films with potential for application as transparent electrodes in optoelectronic devices such as solar cell.展开更多
Using the compound materials and double e-gun evaporation,the compound optical films have been successfully deposited on K9 glass substrate.The refractive index of optical compund films deposited in diffeent parameter...Using the compound materials and double e-gun evaporation,the compound optical films have been successfully deposited on K9 glass substrate.The refractive index of optical compund films deposited in diffeent parameters have been measured and theoretical formula for calculation refractive index of compound films have been derived.It is shown that the experimental curve for the variation of refractive index with wavelength in 0.4 ̄1.4 μm region and the theoretical one agree very well.Using these films,the laser reflecting mirror has been successfully coated.展开更多
文摘Sn coatings were fabricated by mechanical coating technique for the first time. The coatings were characterized by XRD and SEM, among others. The SEM showed that the coatings had an irregular and uneven morphology. The influence of the rotation speed of planetary ball mill on the evolution and formation of the coatings was also investigated. The results indicated that continuous Sn coatings can be formed under a moderate rotation speed. In other words, the coatings cannot be formed when rotation speed was too high or too low. The evolution of the coatings was examined and discussed. The results showed that it followed the universal evolution law of metal coatings which included four stages. However, the exfoliation of the coatings was not seen even the milling time reached 30 h.
基金supported by National Natural Science Foundation of China(81202476)Medical Research Foundation of Guangdong Province(B2012079).
文摘Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopted to monitor this process include measurement of coating weight gain,performance of disintegration and dissolution test,etc.However,not only do these methods cause destruction to the samples,but also consume time and energy.There have recently emerged the applications of process analytical technologies(PAT)on film coating,especially some novel spectroscopic and imaging technologies,which have the potential to real-time track the progress in film coating and optimize production efficiency.This article gives an overview on the application of such technologies for film coating,with the goal to provide a reference for the further researches.
文摘Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.
文摘The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion(Eudragit~?NE30 D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols.
基金supported in part by the National Technology Agency of Finland(40222/05,40171/06)supported by the Biomaterial and Tissue Engineering Graduate School in Finland
文摘Objective of this study was to develope low temperature sol-gel coatings for shape memory metal (NiTi) and evaluate their biocompatibility on NiTi suture material. A series of low temperature TiO2 and TiO2-SiO2 sol-gel coatings were prepared on glass substrates. The silica content of TiO2-SiO2 coatings ranged from 0 to 30 mol%. The coatings were also prepared with polyethyleneglycol (PEG). The contact angle and photocatalytic activity measurements were used to evaluate the surface properties of the coatings. Stability of the coatings was tested in simulated body fluid (SBF). The TiO2-SiO2 90/10 film made with PEG was more hydrophilic, showed photocatalytic activity and was crack-free after the SBF test, thus it was chosen to animal experiment as a new experimental coating. Uncoated NiTi suture and the suture coated with high temperature TiO2 were used as reference materials. NiTi sutures were inserted subcutaneously on the back of rat for four weeks. In routine histological examinations all materials showed good biocompatibility with mild inflammatory cell reaction. No significant differences in the soft tissue response among the materials were observed. Both the high and new low temperature processed sol-gel coatings remained attached on the sutures confirming the suitability of the coating technique on thin NiTi sutures.
基金The financial support from the“Hundred Talents Program”of Chinese Academy of Sciences(J.Liang)is gratefully acknowledged.
文摘Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron microscope(SEM),energy-dispersive X-ray spectrometry(EDS),X-ray diffractometer(XRD)and Raman spectroscopy.It was shown that the flaky GO randomly distributed in the composite film.Compared with the Mg(OH)_(2)film,the Mg(OH)_(2)/GO composite film exhibited more uniform and compact structure.Potentiodynamic polarization tests revealed that the Mg(OH)_(2)/GO composite film could significantly improve the corrosion resistance of Mg(OH)_(2)film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.
文摘In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.
文摘In this work, ZnO thin films were derived by sol-gel using two different techniques;dip coating and spin coating technique. The films were deposited onto glass substrate at room temperature using sol-gel composed from zinc acetate dehydrate, monoethanolamine, isopropanole, and de-ionized water, the films were preheated at 225?C for 15 min. The crystallographic structures of ZnO films were investigated using X-ray diffraction (XRD);the result shows that the good film was prepared at dip coating technique, it was polycrystalline and highly c-orientation along (002) plane, the lattice constant ratio (c/a) was calculated at (002), it was about 1.56. The structure of thin films, prepared by spin coating technique, was amorphous with low intensity and wide peaks. The optical properties of the prepared film were studied using UV-VIS spectrophotometer with the range 190 - 850 nm, and by using the fluorescence spectrometer. The optical characterization of ZnO thin films that were prepared by the dip coating method have good transmittance of about 92% in the visible region, it can be noted from the fluorescence spectrometer two broad visible emission bands centered at 380nm and 430 nm. The optical energy gaps for the direct and indirect allowed transitions were calculated, the values were equal 3.2 eV and 3.1 eV respectively. Dip coating technique create ZnO films with potential for application as transparent electrodes in optoelectronic devices such as solar cell.
文摘Using the compound materials and double e-gun evaporation,the compound optical films have been successfully deposited on K9 glass substrate.The refractive index of optical compund films deposited in diffeent parameters have been measured and theoretical formula for calculation refractive index of compound films have been derived.It is shown that the experimental curve for the variation of refractive index with wavelength in 0.4 ̄1.4 μm region and the theoretical one agree very well.Using these films,the laser reflecting mirror has been successfully coated.