期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery 被引量:7
1
作者 Tianjiang Sun Shibing Zheng +1 位作者 Haihui Du Zhanliang Tao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期301-310,共10页
Although aqueous zinc-ion batteries have gained great development due to their many merits,the frozen aqueous electrolyte hinders their practical application at low temperature conditions.Here,the synergistic e ect of... Although aqueous zinc-ion batteries have gained great development due to their many merits,the frozen aqueous electrolyte hinders their practical application at low temperature conditions.Here,the synergistic e ect of cation and anion to break the hydrogen-bonds network of original water molecules is demonstrated by multi-perspective characterization.Then,an aqueous-salt hydrates deep eutectic solvent of 3.5 M Mg(ClO_(4))_(2)+1 M Zn(ClO_(4))_(2)is proposed and displays an ultralow freezing point of-121℃.A high ionic conductivity of 1.41 mS cm-1 and low viscosity of 22.9 mPa s at-70℃ imply a fast ions transport behavior of this electrolyte.With the benefits of the low-temperature electrolyte,the fabricated Zn||Pyrene-4,5,9,10-tetraone(PTO)and Zn||Phenazine(PNZ)batteries exhibit satisfactory low-temperature performance.For example,Zn||PTO battery shows a high discharge capacity of 101.5 mAh g^(-1)at 0.5 C(200 mA g^(-1))and 71 mAh g^(-1)at 3C(1.2 A g^(-1))when the temperature drops to-70℃.This work provides an unique view to design anti-freezing aqueous electrolyte. 展开更多
关键词 Low-temperature aqueous zinc-ion battery 3.5M Mg(ClO_4)_(2)+1M Zn(ClO_4)_(2)electrolyte Synergistic effect Pyrene-4 5 9 10-tetraone Phenazine
下载PDF
A Binder-Free Amorphous Manganese Dioxide for Aqueous Zinc-Ion Battery
2
作者 Qianqian Yu Guojiang Wu 《Journal of Materials Science and Chemical Engineering》 2022年第6期13-18,共6页
Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of catho... Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of cathodes. Herein, we fabricated amorphous manganese dioxide by an in situ deposition method. The amorphous manganese dioxide can directly serve as the cathode of an aqueous zinc-ion battery without a binder. The resultant cathode exhibits a high specific capacity of 133.9 mAh/g at 200 mA/g and a capacity retention of 82% over 50 cycles at 1 A/g. 展开更多
关键词 Binder-Free Amorphous Manganese Dioxide aqueous zinc-ion battery
下载PDF
V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode 被引量:13
3
作者 Fei Liu Zixian Chen +5 位作者 Guozhao Fang Ziqing Wang Yangsheng Cai Boya Tang Jiang Zhou Shuquan Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期98-108,共11页
AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nan... AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nanoflakes.The V4+-V2O5 cathode exhibits a prominent cycling performance,with a specific capacity of 140 mAhg-1 after 1000 cycles at 10 A g.1,and an excellent rate capability.The good electrochemical performance is attributed to the presence of V4+,which leads to higher electrochemical activity,lower polarization,faster ion diffusion,and higher electrical conductivity than V2O5 without V4+.This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry. 展开更多
关键词 V2O5 MIXED valences Hollow sphere Long-cycle-life aqueous zinc-ion battery
下载PDF
Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts 被引量:6
4
作者 Wenyu Zhang Shuquan Liang +2 位作者 Guozhao Fang Yongqiang Yang Jiang Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期215-226,共12页
Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain ... Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1. 展开更多
关键词 ALUMINUM VANADATE Graphene CATHODE High mass LOADING aqueous zinc-ion battery
下载PDF
γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery 被引量:16
5
作者 Chao Wang Yinxiang Zeng +6 位作者 Xiang Xiao Shijia Wu Guobin Zhong Kaiqi Xu Zengfu Wei Wei Su Xihong Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期182-187,共6页
Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrin... Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrinsically poor rate performance and rapid capacity deterioration.Here,we remove the roadblock by compositing MnO2 nanorods with highly conductive graphene,which remarkably enhances the electrochemical properties of the MnO2 cathode.Benefiting from the boosted electric conductivity and ion diffusion rate as well as the structural protection of graphene,the Zn//MnO2-graphene battery presents an admirable capacity of 301 mAh g^-1 at 0.5 A g^-1,corresponding to a high energy density of 411.6 Wh kg^-1.Even at a high current density of 10 A g^-1,a decent capacity of 95.8 mAh g^-1 is still obtained,manifesting its excellent rate property.Furthermore,an impressive power density of 15 kW kg^-1 is achieved by the Zn//MnO2-graphene battery. 展开更多
关键词 γ-MnO2 GRAPHENE zinc-ion battery HIGH-CAPACITY CATHODE
下载PDF
Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode 被引量:2
6
作者 Binghong She Lutong Shan +5 位作者 Huijie Chen Jiang Zhou Xun Guo Guozhao Fang Xinxin Cao Shuquan Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期172-175,共4页
Due to the intrinsic advantages of nontoxicity, low-cost, and abundant resource of metallic zinc, aqueous zinc-ion batteries (ZIBs) have attracted universal interest [1,2]. Tremendous cathode materials have been explo... Due to the intrinsic advantages of nontoxicity, low-cost, and abundant resource of metallic zinc, aqueous zinc-ion batteries (ZIBs) have attracted universal interest [1,2]. Tremendous cathode materials have been exploited in aqueous ZIBs, such as manganese-based materials [3-11], Co-based materials [12,13] and vanadium-based materials [14-21]. 展开更多
关键词 Sodium VANADATE CATHODE Storage mechanism CYCLING performance aqueous zinc-ion batteries
下载PDF
Stabilizing zinc anode using zeolite imidazole framework functionalized separator for durable aqueous zinc-ion batteries
7
作者 Weisong Zhang Xinyan Zhu +8 位作者 Ling Kang Ziyu Peng Jing Zhu Liang Pan Lei Dai Shude Liu Ling Wang Yongguang Liu Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期23-31,I0003,共10页
Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for... Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs. 展开更多
关键词 aqueous zinc-ion batteries Separators modifications ZIF-8 Zn deposition Dendrite-free
下载PDF
Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries
8
作者 Aiduo Wu Tianhao Wang +4 位作者 Long Zhang Chen Chen Qiaomin Li Xuanhui Qu Yongchang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1752-1765,共14页
Aqueous zinc-ion batteries(AZIBs)show great potential for applications in grid-scale energy storage,given their intrinsic safety,cost effectiveness,environmental friendliness,and impressive electrochemical performance... Aqueous zinc-ion batteries(AZIBs)show great potential for applications in grid-scale energy storage,given their intrinsic safety,cost effectiveness,environmental friendliness,and impressive electrochemical performance.However,strong electrostatic interactions exist between zinc ions and host materials,and they hinder the development of advanced cathode materials for efficient,rapid,and stable Zn-ion storage.MXenes and their derivatives possess a large interlayer spacing,excellent hydrophilicity,outstanding electronic conductivity,and high redox activity.These materials are considered“rising star”cathode candidates for AZIBs.This comprehensive review discusses recent advances in MXenes as AZIB cathodes from the perspectives of crystal structure,Zn-storage mechanism,surface modification,interlayer engineering,and conductive network design to elucidate the correlations among their composition,structure,and electrochemical performance.This work also outlines the remaining challenges faced by MXenes for aqueous Zn-ion storage,such as the urgent need for improved toxic preparation methods,exploration of potential novel MXene cathodes,and suppression of layered MXene restacking upon cycling,and introduces the prospects of MXene-based cathode materials for high-performance AZIBs. 展开更多
关键词 aqueous zinc-ion batteries MXenes terminal groups interlayer engineering conductive network design
下载PDF
An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries
9
作者 Shuang Hou Dingtao Ma +5 位作者 Yanyi Wang Kefeng Ouyang Sicheng Shen Hongwei Mi Lingzhi Zhao Peixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期399-408,I0009,共11页
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal... Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs. 展开更多
关键词 In-situ self-etching Free-standing electrode Pseudocapacitive storage HIGH-POWER zinc-ion batteries
下载PDF
Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries
10
作者 Yunfei Song Laiying Jing +3 位作者 Rutian Wang Jiaxi Cui Mei Li Yunqiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期599-609,I0013,共12页
Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high ... Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs. 展开更多
关键词 aqueous zinc ion batteries Vanadium trioxide Oxygen vacancy Structure evolution Phase optimization
下载PDF
Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries
11
作者 Xiaoxiao Jia Chaofeng Liu +2 位作者 Zhi Wang Di Huang Guozhong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期169-186,共18页
Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic chara... Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic characteristics,and high theoretical capacities.However,challenges such as vanadium dissolution,sluggish Zn^(2+)diffusion kinetics,and low operating voltage still hinder their direct application.In this study,we present a novel vanadium oxide([C_(6)H_(6)N(CH_(3))_(3)]_(1.08)V_(8)O_(20)·0.06H_(2)O,TMPA-VOH),developed by pre-inserting trimethylphenylammonium(TMPA+)cations into VOH.The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects,resulting in a phase and morphology transition,an expansion of the interlayer distance,extrusion of weakly bonded interlayer water,and a substantial increase in V^(4+)content.These modifications synergistically reduce the electrostatic interactions between Zn^(2+)and the V-O lattice,enhancing structural stability and reaction kinetics during cycling.As a result,TMPA-VOH achieves an elevated open circuit voltage and operation voltage,exhibits a large specific capacity(451 mAh g^(-1)at 0.1 A g^(-1))coupled with high energy efficiency(89%),the significantly-reduced battery polarization,and outstanding rate capability and cycling stability.The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials. 展开更多
关键词 zinc-ion battery Vanadium oxide V_(2)O_(5)·nH_(2)O Pre-intercalation Interlayer engineering
下载PDF
Trace Amounts of Triple-Functional Additives Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective 被引量:4
12
作者 Ruwei Chen Wei Zhang +12 位作者 Quanbo Huang Chaohong Guan Wei Zong Yuhang Dai Zijuan Du Zhenyu Zhang Jianwei Li Fei Guo Xuan Gao Haobo Dong Jiexin Zhu Xiaohui Wang Guanjie He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期143-154,共12页
Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on th... Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on the anode.Despite numerous strategies to alleviate these side reactions have been demonstrated,they can only provide limited performance improvement from a single aspect.Herein,a triple-functional additive with trace amounts,ammonium hydroxide,was demonstrated to comprehensively protect zinc anodes.The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes.Moreover,cationic NH^(4+)can preferentially adsorb on the Zn anode surface to shield the“tip effect”and homogenize the electric field.Benefitting from this comprehensive protection,dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized.Besides,improved electrochemical performances can also be achieved in Zn//MnO_(2)full cells by taking the advantages of this triple-functional additive.This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective. 展开更多
关键词 aqueous zinc-ion battery Cationic shielding effect Solid electrolyte interphase pH value Triple-functional additive
下载PDF
Interface challenges and optimization strategies for aqueous zinc-ion batteries
13
作者 Hanwen Liu Qianqin Zhou +4 位作者 Qingbing Xia Yaojie Lei Xiang Long Huang Mike Tebyetekerwa Xiu Song Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期642-659,I0016,共19页
Aqueous zinc-ion batteries have advantages over lithium-ion batteries,such as low cost,and good safety.However,their development is currently facing several challenges.One of the main critical challenges is their poor... Aqueous zinc-ion batteries have advantages over lithium-ion batteries,such as low cost,and good safety.However,their development is currently facing several challenges.One of the main critical challenges is their poor electrode–electrolyte interface.Addressing this requires understanding the physics and chemistry at the electrode–electrolyte interface,including the cathode-electrolyte interface and anodeelectrolyte interface.This review first identifies and analyses the interfacial challenges of aqueous zincion batteries.Then,it discusses the design strategies for addressing the defined interfacial issues from the perspectives of electrolyte optimization,electrode modification,and separator improvement.Finally,it provides corrective recommendations and strategies for the rational design of electrode–electrolyte interface in aqueous zinc-ion batteries towards their high-performance and reliable energy storage. 展开更多
关键词 aqueous zinc-ion battery INTERPHASE SEI ELECTROLYTE Cathode ANODE
下载PDF
Cauliflower-like nanostructured ZnV_(2)S_(4)as a potential cathode material to boost-up high capacity and durability of the aqueous zinc-ion battery
14
作者 Mugilan Narayanasamy Balakrishnan Balan +1 位作者 Chao Yan Subramania Angaiah 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期490-496,共7页
Owing to their unique design and development,high safety and low-cost efficient cathode is still at the forefront of research for rechargeable zinc-ion batteries.However,the suitable cathode operating with ultrahigh c... Owing to their unique design and development,high safety and low-cost efficient cathode is still at the forefront of research for rechargeable zinc-ion batteries.However,the suitable cathode operating with ultrahigh capacity with a dendrite-free anode reaction mechanism remains challenging.In this,the first archetype of a high-rate and morphologically stabled cathode material is constructed from novel cauliflower-like nano-ZnV_(2)S_(4)for aqueous zinc-ion batteries.Thus,nano-ZnV_(2)S_(4)was prepared with an anion exchange reaction using ZnV2(OH)8 cauliflower-like nanostructured array as a template interestingly no morphological and shape changes were detected.The as-prepared nano-ZnV_(2)S_(4)electrode reveals a specific discharge capacity of 348.2 mAh/g during 0.5 A/g with enhanced rate capability and excellent capacity retention of 89.2%at 4 A/g current density even after completing 1000 cycles. 展开更多
关键词 aqueous zinc-ion battery Anion-exchange reaction High-capacity cathode Metal vanadium sulfides Nano-ZnV_(2)S_(4)
原文传递
Ultralarge layer spacing and superior structural stability of V_(2)O_(5)as high-performance cathode for aqueous zinc-ion battery
15
作者 Anni Liu Feng Wu +5 位作者 Yixin Zhang Ying Jiang Chen Xie Keqing Yang Jiahui Zhou Man Xie 《Nano Research》 SCIE EI CSCD 2023年第7期9461-9470,共10页
Aqueous zinc(Zn)-ion batteries(AZIBs)present safe and environmentally friendly features thereby emerging as an attractive energy storage device.The V_(2)O_(5)-based cathodes are promising because of their high theoret... Aqueous zinc(Zn)-ion batteries(AZIBs)present safe and environmentally friendly features thereby emerging as an attractive energy storage device.The V_(2)O_(5)-based cathodes are promising because of their high theoretical capacity and energy density.However,insufficient interlayer distance,easy dissolution and structural collapse due to irreversible crystalline phase transition limit the development of V_(2)O_(5)cathodes in AZIBs.Herein,doubly modified V_(2)O_(5)-based cathode which was in-situ intercalated by polyaniline(PANI)and composited with MXene(Ti_(3)C_(2)T_(x))(denoted PVM)were synthesized by one-step method for the first time.The in situ intercalation of PANI provides a channel for the rapid diffusion of Zn2+and the heterogeneous structures effectively promote charge transfer and enable structural integrity of cathode during cycling.Meanwhile,the conductivity of PVM electrode is greatly improved.Specifically,the PVM electrode shows a superior rate performance of 82 mAh·g^(-1)after 2000 cycles at 10 A·g^(-1).And it shows high pseudocapacitance behavior(80.23%capacitor contribution ratio at 0.1 mV·s^(-1)).A novel method of intercalation composite modification for the cathode is proposed,which provides fundamental guidance for the development of high-performance cathodes for AZIBs. 展开更多
关键词 in situ intercalation heterostructure organic/inorganic cathode aqueous zinc-ion battery
原文传递
Understanding of the charge storage mechanism of MnO_(2)-based aqueous zinc-ion batteries:Reaction processes and regulation strategies
16
作者 Nan Zhang Yu-Rui Ji +3 位作者 Jian-Cang Wang Peng-Fei Wang Yan-Rong Zhu Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期423-463,I0010,共42页
Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of mo... Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of most hopeful cathode materials of AZIBs on account of some extraordinary merits,such as richly natural resources,low toxicity,high discharge potential,and large theoretical capacity.However,the crystal structure diversity of MnO_(2) results in an obvious various of charge storage mechanisms,which can cause great differences in electrochemical performance.Furthermore,several challenges,including intrinsic poor conductivity,dissolution of manganese and sluggish ion transport dynamics should be conquered before real practice.This work focuses on the reaction mechanisms and recent progress of MnO_(2)-based materials of AZIBs.In this review,a detailed review of the reaction mechanisms and optimal ways for enhancing electrochemical performance for MnO_(2)-based materials is proposed.At last,a number of viewpoints on challenges,future development direction,and foreground of MnO_(2)-based materials of aqueous zinc ions batteries are put forward.This review clarifies reaction mechanism of MnO_(2)-based materials of AZIBs,and offers a new perspective for the future invention in MnO_(2)-based cathode materials,thus accelerate the extensive development and commercialization practice of aqueous zinc ions batteries. 展开更多
关键词 aqueous zinc-ion battery MnO_(2) Charge storage mechanism Optimization strategy
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:1
17
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) aqueous electrolyte Gel electrolyte Electrochemical stability window Li dendrite
下载PDF
Polarizable Additive with Intermediate Chelation Strength for Stable Aqueous Zinc‑Ion Batteries
18
作者 Yuting Xia Rongao Tong +5 位作者 Jingxi Zhang Mingjie Xu Gang Shao Hailong Wang Yanhao Dong Chang‑An Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期41-55,共15页
Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be... Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries. 展开更多
关键词 aqueous zinc-ion batteries Electrolyte additives DTPA-Na Chelation strength
下载PDF
Rational construction of Ag@MIL-88B(V)-derived hierarchical porous Ag-V_(2)O_(5) heterostructures with enhanced diffusion kinetics and cycling stability for aqueous zinc-ion batteries 被引量:1
19
作者 Yibo Zhang Zhihua Li +3 位作者 Liangjun Gong Xuyu Wang Peng Hu Jun Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期561-571,I0015,共12页
With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,th... With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,the inherent inferior electrical conductivity,low specific surface area,and sluggish Zn^(2+)diffusion kinetics of the traditional vanadium-based oxides have greatly impeded their development.Herein,a novel hierarchical porous spindle-shaped Ag-V_(2)O_(5) with unique heterostructures was rationally designed via a simple MOF-assisted synthetic method and applied as stable cathode for aqueous ZIBs.The high specific surface area and hierarchically porous superstructures endowed Ag-V_(2)O_(5) with sufficient electrochemical active sites and shortened the diffusion pathways of Zn^(2+),which was beneficial to accelerate the reversible transport of Zn^(2+)and deliver a high specific capacity(426 mA h g^(-1) at 0.1 A g^(-1) and 96.5%capacity retention after 100 cycles).Meanwhile,the self-built-in electric fields at the heterointerface of Ag-V_(2)O_(5) electrode could strengthen the synergistic coupling interaction between Ag and V_(2)O_(5),which can effectively enhance the electric conductivity and maintain the structural integrity,resulting in superb rate capability(326.1 mA h g^(-1) at 5.0 A g^(-1))and remarkable cycling stability(89.7%capacity retention after 2000 cycles at 5.0 A g^(-1)).Moreover,the reversible Zn^(2+)storage mechanism was further investigated and elucidated by kinetics analysis and DFT calculations. 展开更多
关键词 aqueous zinc-ion batteries Metal-organic frameworks V_(2)O_(5) HETEROSTRUCTURES Nano silver
下载PDF
Recent Advances in Aqueous Zn||MnO_(2)Batteries
20
作者 Chuan Li Rong Zhang +3 位作者 Huilin Cui Yanbo Wang Guojin Liang Chunyi Zhi 《Transactions of Tianjin University》 EI CAS 2024年第1期27-39,共13页
Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,a... Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,achieving high energy density in Zn||MnO_(2)batteries remains challenging,highlighting the need to understand the electrochemical reaction mechanisms underlying these batteries more deeply and optimize battery components,including electrodes and electrolytes.This review comprehensively summarizes the latest advancements for understanding the electrochemistry reaction mechanisms and designing electrodes and electrolytes for Zn||MnO_(2)batteries in mildly and strongly acidic environments.Furthermore,we highlight the key challenges hindering the extensive application of Zn||MnO_(2)batteries,including high-voltage requirements and areal capacity,and propose innovative solutions to overcome these challenges.We suggest that MnO_(2)/Mn^(2+)conversion in neutral electrolytes is a crucial aspect that needs to be addressed to achieve high-performance Zn||MnO_(2)batteries.These approaches could lead to breakthroughs in the future development of Zn||MnO_(2)batteries,off ering a more sustainable,costeff ective,and high-performance alternative to traditional batteries. 展开更多
关键词 aqueous Zn||MnO_(2)batteries zinc-ion batteries Zinc batteries MnO_(2)
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部