The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jita...The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2–4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10^(−14)s^(−1)to 6.52×10^(−16)s^(−1).The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo–Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.展开更多
Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The e...Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.展开更多
Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study,...Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study, the ^40Ar/^39Ar and sensitive high resolution ion micro-probe (SHRIMP) U-Pb dating methods were both used and the results compared, particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding, to establish ages that are close to the real emplacements. The results of SHRIMP U-Pb dating for zircon showed a high amount of U, but a very low value for Th/U. The high U amount, coupled with characteristics of inclusions in zircons, indicates that Xuebaoding granites are not suitable for U-Pb dating. Therefore, muscovite in the same granite samples was selected for ^40Ar/^39Ar dating. The ^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding, gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma. The 4^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ^40Ar/^36Ar intercept of 277.0±23.4 (2σ) was very close to the air ratio, indicating that no apparent excess argon contamination was present. These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma, respectively. Through comparison of both dating methods and their results, we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ^40Ar/^39Ar dating without extra Ar. Based on this evidence, as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites, it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma. Moreover, compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt, the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze. Therefore, ^40Ar/^39Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.展开更多
Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages ...Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages of 126 Ma to 135 Ma with a high level of confidence according to the agreement between isochron and plateau ages. The four Ar-Ar ages are relatively consistent within the analytical error. These ages are also consistent with, but more precise than, previous K-Ar and Rb-Sr ages and thus provide better constraints on the time of porphyry formation and associated Cu-Au mineralization along the middle to lower part of the Yangtze metallogenic belt. The ages of 126 to 135 Ma are interpreted to represent the intrusive time of the Shaxi porphyry, so that the Cu-Au mineralization should have occurred later due to the post-magmatic hydrothermal event.展开更多
Increasing world-class, high-grade, and metals-enriched supergene manganese ore deposits have been discovered in the last two decades, making them more and more economically important. However, data on the timing and ...Increasing world-class, high-grade, and metals-enriched supergene manganese ore deposits have been discovered in the last two decades, making them more and more economically important. However, data on the timing and duration of their formation are sparse, mainly due to the difficulties extracting datable minerals suited to traditional radiometric dating methods. Hollandite, cryptomelane, coronadite, todorokite, and manjiroite are common manganese oxide minerals in supergene environments. These minerals host potassium of variable amounts from 0.1 wt% to 5.0 wt% in their structural sites. This geochemical property provides possibility to date supergene manganese ores by using K-Ar and 40Ar/ 39Ar methods. In this study, we perform 40Ar/ 39Ar dating on a 7.1-cm-thick botryoidal manganese nodule from an ancient weathering profile at Mount Tabor, central Queensland, Australia. Laser microprobe incremental analyses of distinct growth bands, from the inner core through the intermediate bands to the outermost crusts of the nodule, have yielded high quality 40Ar/ 39Ar ages at 27.3 Ma, 20.9 Ma, 19.2 Ma, and 16.1 Ma, respectively. The age results permit preliminary estimates on the average growth rates of the nodule varying from 4.7×10 -3 mm/ka to 7.6×10 -3 mm/ka to 9.0×10 -3 mm/ka, from the core to the rim. Results of this study are of significance in our understanding of the mode, mechanism, process, and climatic conditions in the formation of supergene manganese ore deposits.展开更多
The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau.This region was considered to be in the southeastward extension of the Lhasa Block,bounded by Nujiang suture zone in the north and Yarl...The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau.This region was considered to be in the southeastward extension of the Lhasa Block,bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south.The Demala Group complex,a set of high-grade metamorphic gneisses widely distributed in the Chayu area,is known as the Precambrian metamorphic basement of the Lhasa Block in the area.According to field-based investigations and microstructure analysis,the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses,biotite quartzofeldspathic gneiss,granitic gneiss,amphibolite,mica schist,and quartz schist,with many leucogranite veins.The zircon U-Pb ages of two granitic gneiss samples are 205±1 Ma and 218±1 Ma,respectively,representing the ages of their protoliths.The zircons from two biotite plagiogneisses samples show core-rim structures.The U-Pb ages of the cores are mainly 644–446 Ma,1213–865 Ma,and 1780–1400 Ma,reflecting the age characteristics of clastic zircons during sedimentation of the original rocks.The U-Pb ages of the rims are from 203±2 Ma to 190±1 Ma,which represent the age of metamorphism.The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma,interpreted as the age of the anatexis in the Demala Group complex.Biotite and muscovite separates were selected from the granitic gneiss,banded gneiss,and leucogranite veins for 40Ar/39Ar dating.The plateau ages of three muscovite samples are 16.56±0.21 Ma,16.90±0.21 Ma,and 23.40±0.31 Ma,and the plateau ages of four biotite samples are 16.70±0.24 Ma,16.14±0.19 Ma,15.88±0.20 Ma,and 14.39±0.20 Ma.The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex.Combined with the previous research results of the Demala Group complex,the authors refer that the Demala Group complex should be a set of metamorphic complex.The complex includes not only Precambrian basement metamorphic rock series,but also Paleozoic sedimentary rock and Mesozoic granitic rock.Based on the deformation characteristics,the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic,namely Late Triassic-Early Jurassic(203–190 Ma)and Oligocene–Miocene(24–14 Ma).The early stage of metamorphism(ranging from 203–190 Ma)was related to the Late Triassic tectono-magmatism in the area.The anatexis and uplifting-exhumation of the later stage(24–14 Ma)were related to the shearing of the Jiali strike-slip fault zone.The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.展开更多
A suite of potassium-bearing minerals from the Walgidee Hills lamproite intrusion in the Kimberley region of Western Australia was selected for 39Ar/40Ar dating. These included wadeite, jeppeite, priderite, potassium ...A suite of potassium-bearing minerals from the Walgidee Hills lamproite intrusion in the Kimberley region of Western Australia was selected for 39Ar/40Ar dating. These included wadeite, jeppeite, priderite, potassium richterite, and phlogopite. All recorded excellent plateau ages, with the mean age of the combined data set being 17.3±0.3 Ma. Phlogopite recorded the largest uncertainty, whereas, of the other minerals,wadeite gave the best precision. Although rare to absent in common magmatic rocks, these minerals are widely distributed in alkaline complexes and in lamproite, kimberlite and orangeite intrusions. The results indicate this suite of minerals is excellent for 39Ar/40Ar dating and that they can be used singly or in combination to obtain the precise magmatic crystallization ages of ultra-alkaline rocks. Because of the stability of potassium richterite at mantle depths, 39Ar/40Ar dating of MARID(micaamphibole-rutile-ilmenite-diopside) xenoliths should be a more widely-applied technique to investigating mantle geodynamics.展开更多
Silurian, Devonian and Carboniferous geological bodies in the Mianxian-Lueyang (Mian-Lue) collisional belt (MLB) and its neighbouring areas, southern Qinling Mountains, China, show similar characteristics of having un...Silurian, Devonian and Carboniferous geological bodies in the Mianxian-Lueyang (Mian-Lue) collisional belt (MLB) and its neighbouring areas, southern Qinling Mountains, China, show similar characteristics of having undergone deformation of two stages. The earlier one, which is inferred to be related to collisional orogeny between the Yangtze and Sino-Korean palaeocontinents based on previous geological data, is responsible for large-scale, north-verging recumbent folds and overthrusts, and associated with low greenschist fades metamorphism. 40Ar/39Ar dating of three muscovite samples taken from different localities yields plateau ages of 226.9±0.9 and 219.5±1.4 Ma and an apparent age of 194.5±3.0 Ma. Thus, the late Triassic collision between the Yangtze and Sino-Korean palaeocontinents has been constrained.展开更多
The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicat...The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.展开更多
The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the mai...The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23-16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous - late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 4~Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.展开更多
The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age ...The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age remains much disputed,which prevents the identification of the relationship between the mineralization and the associated magmatism.In this paper,we quantitatively present the feasibility of making ore mineral 40Ar/39Ar dating and report reliable 40Ar/39Ar ages of lamprophyre groundmass,K-feldspar and sphalerite from the Zhenzigou deposit.Direct and indirect methods are applied to constrain the timing of mineralization,which plays a vital role in discussing the contribution of multistage magmatism to ore formation.The low-potassium sphalerite yielded an inverse isochron age of 232.8±41.5 Ma,which features a relatively large uncertainty.Two lamprophyre groundmasses got reliable inverse isochron ages of 193.2±1.3 Ma and 152.3±1.5 Ma,respectively.K-feldspar yielded a precise inverse isochron age of 134.9±0.9 Ma.These four ages indicate that the mineralization is closely associated with Mesozoic magmatism.Consequently,regarding the cooling age of the earliest Mesozoic Shuangdinggou intrusion(224.2±1.2 Ma)as the initial time of mineralization,we can further constrain the age of the sphalerite to 224–191 Ma.These new and existing geochronological data,combined with the interaction cutting or symbiotic relationship between the lamprophyre veins and ore veins,suggest that the Pb-Zn-Au-Ag mineralization in the Qingchengzi orefield mainly occurred during three periods:the late Triassic(ca.224–193 Ma),the late Jurassic(ca.167–152 Ma)and the early Cretaceous(ca.138–134 Ma).This polymetallic deposits are shown to have been formed during multiple events coinciding with periods of the Mesozoic magmatic activity.In contrast,the Proterozoic magmatism and submarine exhalative and hydrothermal sedimentation in the Liaolaomo paleorift served mainly to transport and concentrate the ore-forming substances at the Liaohe Group with no associated Pb-Zn-Au-Ag mineralization.展开更多
Metamorphic provinces such as the^1 Ga Grenvillian,~400 Ma Caledonide and Triassic Qinling Provinces often contain rocks with high-pressure assemblages such as eclogites,which formed at mantle depths in subduction zon...Metamorphic provinces such as the^1 Ga Grenvillian,~400 Ma Caledonide and Triassic Qinling Provinces often contain rocks with high-pressure assemblages such as eclogites,which formed at mantle depths in subduction zones.These are evidence of the accretion of terranes by subduction of oceans and collision to form large tectonostratigraphic provinces.The Mesoproterozoic Namaqua-Natal Province comprises a number of terranes thought to have been assembled by plate-tectonic processes,but they have generally yielded metamorphic pressures below 5 kbar,corresponding to<20 km,crustal depths,lacking evidence for subduction processes.The Kaaien Terrane in the Namaqua Front contains two large garbenschiefer units with the unusual paragenesis garnet-hornblende-epidote-white mica-plagioclase-ilmenite-quartz.Their protoliths are graywackes influenced by andesitic volcanism during their deposition at^1870 Ma,in a passive margin of the Rehoboth Province or Kaapvaal Craton.Prograde garnet growth dated at 11655 Ma culminated in peak metamorphic conditions of 64530C and 10.40.7 kbar,corresponding to 40 km depth.This is attributed to subduction of these rocks before collision between the overriding arc-related Areachap Terrane,the Kaaien Terrane and the Kaapvaal-Rehoboth cratonic block during the Namaqua orogeny.Exhumation of the garbenschiefer slabs was followed by rapid cooling,as the 11435 Ma argon dates of hornblende and white mica,with closure temperatures^540C and^440C respectively,are the same within error.This was probably due to tectonic juxtaposition of the garbenschiefer slab with much cooler rock units.The exhumation was accommodated along the Trooilapspan-Brakbosch Shear Zone due to ongoing transpression.Other components of the Namaqua Front have distinctly different P-T-t paths,exemplified by greenschist metamorphism in the 1300 Ma Wilgenhoutsdrift Group,and medium-pressure metamorphism in the Areachap Terrane.They were juxtaposed by late-tectonic uplift and transpressional movements.The^40 km depth of garbenschiefer peak metamorphism is the deepest yet found in the Namaqua-Natal Province and strengthens the plate tectonic model of accretion by collision of terranes at the end of a Wilson cycle.The high pressure paragenesis of the garbenschiefer was preserved due to its location in the Namaqua Front,whereas most other parts of the Namaqua-Natal Province were overprinted by 1100–1020 Ma thermal events after the collision events.展开更多
Bulk separates of porphyroclastic phengite, neoformed phengite and their mixtures from the Tan-Lu HP mylonites overprinted on the Sulu UHP rocks were analyzed with the 40Ar/39Ar step heating method. Two samples of the...Bulk separates of porphyroclastic phengite, neoformed phengite and their mixtures from the Tan-Lu HP mylonites overprinted on the Sulu UHP rocks were analyzed with the 40Ar/39Ar step heating method. Two samples of the neoformed phengite from ultramylonite give 40Ar/39Ar plateau ages of 209.9±1.8 Ma and 214.3±1.8 Ma, which are interpreted as representing cooling times of the TanLu sinistral faulting, and provide geochronological evidence for the syn-orogenic faulting of the Tan-Lu fault zone. The results show that the phengite formed during the retrograde eclogite-facies mylonitization was not contaminated with excess argon and can be used for dating the deformation. Argon closure in previous K-bearing minerals with excess argon under a retrograde HP dry condition is considered to be the reason for lack of excess argon incorporation in the neoformed phengite. Five porphyroclastic phengite samples yield 40Ar/39Ar plateau ages ranging from 666±12 Ma to 307.1±3.3 Ma, which are interpreted as being contaminated with excess argon. Two mixture samples with plateau ages of 239.4±2.1 Ma and 239.3±2.0 Ma show upward-convex age spectra caused by the mixture of older porphyroclastic phengite with excess argon incorporation and younger neoformed phengite without excess argon incorporation. It is demonstrated that excess argon introduced from the previous UHP metamorphism is still preserved in the pre-existing phengite after the Tan-Lu eclogite-facies mylonitization. The intense deformation under HT and HP conditions cannot erase excess argon in the previous phengite totally due to restricted fluid activities. These porphyroclastic phengite previously contaminated with excess argon cannot be used for dating the later HP deformation. This indicates that deformation under a HP dry condition does not play an important role in removing previous 40Are in phengite.展开更多
The Haftcheshmeh porphyry Cu-Mo-Au deposit in the Arasbaran metallogenic belt (AMB) of NW Iran contains more than 185 Mt of ore, with a grade ranging from 0.3% to 0.4%. It is hosted within a porphyritic diorite to g...The Haftcheshmeh porphyry Cu-Mo-Au deposit in the Arasbaran metallogenic belt (AMB) of NW Iran contains more than 185 Mt of ore, with a grade ranging from 0.3% to 0.4%. It is hosted within a porphyritic diorite to granodiorite intruded into an older gabbro - diorite intrusion. 40Ar/39Ar analyses of primary magmatic hornblende from the granodiorite porphyry and gabbro - diorite show plateau ages of 26.41 ± 0.59 Ma, with an inverse isochron age of 25.9 ± 1.0 Ma and a plateau age of 27.47 ± 0.17 Ma, with an inverse isochron age of 27.48 ± 0.35 Ma for these two rock types, respectively. Comparing these new age data with those from the nearby Sungun (20.69 ± 0.35 Ma) and Kighal porphyry deposits defines a northwest-southeast Cu-Mo-Au mineralization zone extending for 20 km over the time span of-27 to 20 Ma. Geochemically, Haftcheshmeh rocks are calc-alkaline with high potassium affinities with tectonic setting in relation to volcanic arc setting. Large ion lithophile elements (LILE) such as Th, U and K show enrichment on a primitive mantle normalized diagram (specially Pb), and are depleted in high field strength elements (HFSE) such as Ti and Nb, pointing to a mantle magma source contamination with crustal materials by subducted oceanic crust.展开更多
The Wangershan gold deposit and spatially related Shangzhuang granite, eastern Shandong Province, have been precisely dated by 40 Ar/ 39 Ar laser incremental heating technique. Magmatic hornblende and biotite, ...The Wangershan gold deposit and spatially related Shangzhuang granite, eastern Shandong Province, have been precisely dated by 40 Ar/ 39 Ar laser incremental heating technique. Magmatic hornblende and biotite, collected from the Shangzhuang granites, yielded well-defined and reproducible plateau ages at 128.1-127.5 and 124.4-124.1 Ma (2 σ ), measuring the cooling ages of the intrusion at ca. 500 ℃ and 300-350 ℃, respectively. Hydrothermal sericite extracted from auriferous vein gave high-quality plateau ages between (120.6±0.3) Ma and (120.0±0.4) Ma (2 σ ). Given the similarity of the closure temperature for argon diffusion (300-350 ℃) in the sericite mineral to the homogenization temperature of primary fluid inclusions in the quartz from gold ores, and the intergrowth of sericite with native gold, present 40 Ar/ 39 Ar sericite ages can be reliably interpreted in terms of the mineralization age for the Wangershan deposit. 40 Ar/ 39 Ar hornblende and biotite ages permit an estimate for the cooling rate of the Shangzhuang granite at about 50 ℃/Ma. There are abundant intermediate-mafic dikes in most gold camps of eastern Shandong, whose ages of formation have been previously constrained mainly at 121-119 Ma. The temporal association between the Shangzhuang granite, the Wangershan gold deposit, and the widespread dikes confirms that intrusive activity, gold mineralization, and dike emplacement in this region were broadly coeval, reflecting significant continental lithosphere thinning and resulting crustal extension of Early Cretaceous in eastern China.展开更多
A new fully automatic ^40Ar/^39Ar laboratory with a Thermo Scientific ARGUS VI mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparatio...A new fully automatic ^40Ar/^39Ar laboratory with a Thermo Scientific ARGUS VI mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparation system (80 mL), a CO2 laser for heating samples, a crusher for extracting fluid inclusions within K-poor minerals and an air reservoir (31 L) and pipette (0.1 mL) system. The ARGUS VI mass spectrometer is operated by the Qtegra Noble Gas software, which can control the peripheral accessories, such as pneumatic valves, CO2 laser and crusher through a PeriCon (peripheral controller). The experimental procedures of atmospheric argon ana- lyses, ^40Ar/^39Ar dating by laser stepwise heating and by progressive crushing in vacuo, can be fully automatically performed. The weighted mean of atmospheric ^40Ar/^36Ar ratios is 302.22+0.03 (1σ, MSWD=0.74, n=200), indicating that air reservoir and pipette system and the whole instrument sys- tem are very stable. This laboratory is a successful pioneer example in China to establish a new no- ble gas laboratory with self-made peripheral accessories expect for the mass spectrometer.展开更多
ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples a...ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples analyzed by laser heating yielded saddle-shaped age spectra with total gas ages of 574.5±2.5 and 562.5=±2.5 Ma. These ages are much older than the reported zircon U-Pb ages (-495 Ma) from Yuka eclogite, indicating the presence of excess ^40Ar. In order to decipher the occur- rence of excess ^40Ar and constrain the age of amphibolite-facies retrogression, two duplicate amphibole samples were further employed for ^40Ar/^39Ar in vacuo crushing analyses. Both samples exhibit similar monotonically declining release spectra, which are characterized by rapid decline of anomalously old apparent ages in the early steps. The data of the late steps yielded concordant apparent ages with pla- teau ages of 460.9±1.2 and 459.6±1.8 Ma. We interpret that gases released in the early steps derive from the significant excess ^40Ar containing secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, whereas those released in the later steps rep- resent the contribution of the small primary fluid inclusions (PFIs).展开更多
Four international standards,Ga1550,MMhb-1,Lp-6,Bern 4M,and one domesticstandard BT-1 have been intercalibrated.The repeated measurements on MMhb-1 with different massdemonstrate that MMhb-1 is inhomogeneous in age an...Four international standards,Ga1550,MMhb-1,Lp-6,Bern 4M,and one domesticstandard BT-1 have been intercalibrated.The repeated measurements on MMhb-1 with different massdemonstrate that MMhb-1 is inhomogeneous in age and its average age is 519.8 Ma.The results of Bern4M and Lp-6 reflect that they have an invariable value of^(40)Ar*/^(39)Ar_(k)(F)and the ages weobtained are consensus with their K-Ar age:Lp-6=127.7Ma;Bern 4M=18.2 Ma.Analyses of BT-1 agespectra,Ca/K and Cl/K spectra as well as inverse isochrons indicate that the sample is homogeneousand invariable and keeps close chemically,with its trapped argon isotope composition close to theatmosphere.The dating results show that age values are reproducible and steady,total fusion age,step-heating age,plateau age and isochron age are in accord with each other within the error range(2σ).Therefore,we recommend 28.7 Ma as the calibrated age of BT-1.We also discuss the variationin neutron flux gradients of Beijing 49-2 reactor.It was found that the neutron flux gradientvaries considerably,and more monitors(standard samples)are needed to fix the trend of variation.The coefficient of the 49-2 reactor that transfers the ratio of production rate of^(37)Ar_(Ca)/^(39)Ar_(K) into Ca/K ratio is 1.78.This is different from that reported earlier,2.0,which may be caused by the reconstruction of the reactor.展开更多
Supergene Mn-oxide deposits are commonly related to thick weathering profiles and form as a result of intense and prolonged weathering of Mn-bearing precursor rocks, processes facilitated by a combination of multiple ...Supergene Mn-oxide deposits are commonly related to thick weathering profiles and form as a result of intense and prolonged weathering of Mn-bearing precursor rocks, processes facilitated by a combination of multiple factors including warm and wet climate, relatively quiescent tectonic environment, and favorable geomorphic setting. Precise age constraints of supergene Mn-oxides may provide valuable information on the climatic, tectonic, and geomorphic conditions prevailing in the geological past. 4~Ar]39Ar laser incremental heating analysis of cryptomelane from the Baye manganese deposit, western Yunnan-Guizhou Plateau, SW China, was conducted to provide numerical constraints on the ages of supergene Mn enrichment and growth rates of Mn-oxide veins. In this study, two Mn-oxide veins of 3-6 cm thickness, termed as Vein A and B, respectively, were col- lected for 4~Ar/39Ar dating. Vein A is subhorizontal and present in fractures parallel to schistosity of the Proterozoic spessartine schists, whereas Vein B is filled in nearly vertical fractures penetrating the schistosity. A combination of optical microscopy, XRD, SEM, and EMP analyses demonstrate that mineral grains extracted from both veins consist of pure, well-crystallized cryptomlane, which has acicular crystal forms and contains 0.96%4.70% K2O. Fourteen cryptomelane subsamples extracted from different growth bands of Vein A yield well-defined plateau ages ranging from 1.35 ± 0.05 to 1.16 ± 0.04 Ma (2or), whereas seven subsamples obtained from Vein B have plateau ages ranging from 1.23 ±0.05 to 1.01 ± 0.04 Ma (20). The age results permit estimation for the growth rates of both veins at ca. 115-153 and 34-67 mm Ma-1, respectively. Distinct growth rates between Veins A and B are likely reflective of different fluid pressures during their formation governed by the orientation of the fractures hosting the veins. The growth rates calculated for both veins are 1-2 orders of magnitude higher than the val- ues (〈1-10 mm Ma-l) estimated for Mn-oxide nodules in supergene Mn deposits elsewhere. The high growth rates obtained for the Baye samples are consistent with direct precipitation of tetravalent Mn-oxides from weathering solution in open cavities or fractures, characterized by incremental growth of Mn-oxide bands from the margin to the center of the cavities or fractures. In contrast, Mn-oxide nodules with low growth rates from other deposits formed through self-oxidation and self-catalization, and grow outwards from the nuclei. In addition, prevalence of warm and humid climate and prolonged tectonic uplift in the Yunnan Plateau may have also partly contributed to the rapid growth of Mn-oxides in the Baye deposit.展开更多
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emp...Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (-160 Ma), I-type granite in the middle stage (-130 Ma) and anorogenic A-type granite in the late stage (-115 Ma). Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New ^40Ar/^39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A- type granite, Taishanmiao pluton, was emplaced at -115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between -160 Ma and -115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial ^87Sr/^86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratous.展开更多
基金financially supported by the China Geological Survey Scientific Research Project(Grant Nos.DD20190167 and DD20190053)the National Natural Science Foundation of China(Grant No.42172259).
文摘The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2–4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10^(−14)s^(−1)to 6.52×10^(−16)s^(−1).The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo–Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.
文摘Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.
基金funded by the Major State Basic Research Program of China (2009CB421008)the Program for the New Century Excellent Talents in China(NCET-07-0771) +1 种基金the Program for Changjiang Scholars and Innovative Research Team in University,"111"Project(No.B07011)State Key Laboratory of Geological Processes and Mineral Resources(No.GPMR200838,GPMR0736)
文摘Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study, the ^40Ar/^39Ar and sensitive high resolution ion micro-probe (SHRIMP) U-Pb dating methods were both used and the results compared, particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding, to establish ages that are close to the real emplacements. The results of SHRIMP U-Pb dating for zircon showed a high amount of U, but a very low value for Th/U. The high U amount, coupled with characteristics of inclusions in zircons, indicates that Xuebaoding granites are not suitable for U-Pb dating. Therefore, muscovite in the same granite samples was selected for ^40Ar/^39Ar dating. The ^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding, gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma. The 4^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ^40Ar/^36Ar intercept of 277.0±23.4 (2σ) was very close to the air ratio, indicating that no apparent excess argon contamination was present. These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma, respectively. Through comparison of both dating methods and their results, we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ^40Ar/^39Ar dating without extra Ar. Based on this evidence, as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites, it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma. Moreover, compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt, the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze. Therefore, ^40Ar/^39Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.
基金This study is supported by funds from the Ministry of Science and Technology of China (2006CB403500) ; National Natural Science Foundation of China (40473021).
文摘Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages of 126 Ma to 135 Ma with a high level of confidence according to the agreement between isochron and plateau ages. The four Ar-Ar ages are relatively consistent within the analytical error. These ages are also consistent with, but more precise than, previous K-Ar and Rb-Sr ages and thus provide better constraints on the time of porphyry formation and associated Cu-Au mineralization along the middle to lower part of the Yangtze metallogenic belt. The ages of 126 to 135 Ma are interpreted to represent the intrusive time of the Shaxi porphyry, so that the Cu-Au mineralization should have occurred later due to the post-magmatic hydrothermal event.
文摘Increasing world-class, high-grade, and metals-enriched supergene manganese ore deposits have been discovered in the last two decades, making them more and more economically important. However, data on the timing and duration of their formation are sparse, mainly due to the difficulties extracting datable minerals suited to traditional radiometric dating methods. Hollandite, cryptomelane, coronadite, todorokite, and manjiroite are common manganese oxide minerals in supergene environments. These minerals host potassium of variable amounts from 0.1 wt% to 5.0 wt% in their structural sites. This geochemical property provides possibility to date supergene manganese ores by using K-Ar and 40Ar/ 39Ar methods. In this study, we perform 40Ar/ 39Ar dating on a 7.1-cm-thick botryoidal manganese nodule from an ancient weathering profile at Mount Tabor, central Queensland, Australia. Laser microprobe incremental analyses of distinct growth bands, from the inner core through the intermediate bands to the outermost crusts of the nodule, have yielded high quality 40Ar/ 39Ar ages at 27.3 Ma, 20.9 Ma, 19.2 Ma, and 16.1 Ma, respectively. The age results permit preliminary estimates on the average growth rates of the nodule varying from 4.7×10 -3 mm/ka to 7.6×10 -3 mm/ka to 9.0×10 -3 mm/ka, from the core to the rim. Results of this study are of significance in our understanding of the mode, mechanism, process, and climatic conditions in the formation of supergene manganese ore deposits.
基金a project of National Natural Science Foundation of China(41773026)two geological survey projects initiated by the China Geological Survey(DD20190053,DD20160021).
文摘The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau.This region was considered to be in the southeastward extension of the Lhasa Block,bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south.The Demala Group complex,a set of high-grade metamorphic gneisses widely distributed in the Chayu area,is known as the Precambrian metamorphic basement of the Lhasa Block in the area.According to field-based investigations and microstructure analysis,the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses,biotite quartzofeldspathic gneiss,granitic gneiss,amphibolite,mica schist,and quartz schist,with many leucogranite veins.The zircon U-Pb ages of two granitic gneiss samples are 205±1 Ma and 218±1 Ma,respectively,representing the ages of their protoliths.The zircons from two biotite plagiogneisses samples show core-rim structures.The U-Pb ages of the cores are mainly 644–446 Ma,1213–865 Ma,and 1780–1400 Ma,reflecting the age characteristics of clastic zircons during sedimentation of the original rocks.The U-Pb ages of the rims are from 203±2 Ma to 190±1 Ma,which represent the age of metamorphism.The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma,interpreted as the age of the anatexis in the Demala Group complex.Biotite and muscovite separates were selected from the granitic gneiss,banded gneiss,and leucogranite veins for 40Ar/39Ar dating.The plateau ages of three muscovite samples are 16.56±0.21 Ma,16.90±0.21 Ma,and 23.40±0.31 Ma,and the plateau ages of four biotite samples are 16.70±0.24 Ma,16.14±0.19 Ma,15.88±0.20 Ma,and 14.39±0.20 Ma.The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex.Combined with the previous research results of the Demala Group complex,the authors refer that the Demala Group complex should be a set of metamorphic complex.The complex includes not only Precambrian basement metamorphic rock series,but also Paleozoic sedimentary rock and Mesozoic granitic rock.Based on the deformation characteristics,the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic,namely Late Triassic-Early Jurassic(203–190 Ma)and Oligocene–Miocene(24–14 Ma).The early stage of metamorphism(ranging from 203–190 Ma)was related to the Late Triassic tectono-magmatism in the area.The anatexis and uplifting-exhumation of the later stage(24–14 Ma)were related to the shearing of the Jiali strike-slip fault zone.The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.
文摘A suite of potassium-bearing minerals from the Walgidee Hills lamproite intrusion in the Kimberley region of Western Australia was selected for 39Ar/40Ar dating. These included wadeite, jeppeite, priderite, potassium richterite, and phlogopite. All recorded excellent plateau ages, with the mean age of the combined data set being 17.3±0.3 Ma. Phlogopite recorded the largest uncertainty, whereas, of the other minerals,wadeite gave the best precision. Although rare to absent in common magmatic rocks, these minerals are widely distributed in alkaline complexes and in lamproite, kimberlite and orangeite intrusions. The results indicate this suite of minerals is excellent for 39Ar/40Ar dating and that they can be used singly or in combination to obtain the precise magmatic crystallization ages of ultra-alkaline rocks. Because of the stability of potassium richterite at mantle depths, 39Ar/40Ar dating of MARID(micaamphibole-rutile-ilmenite-diopside) xenoliths should be a more widely-applied technique to investigating mantle geodynamics.
文摘Silurian, Devonian and Carboniferous geological bodies in the Mianxian-Lueyang (Mian-Lue) collisional belt (MLB) and its neighbouring areas, southern Qinling Mountains, China, show similar characteristics of having undergone deformation of two stages. The earlier one, which is inferred to be related to collisional orogeny between the Yangtze and Sino-Korean palaeocontinents based on previous geological data, is responsible for large-scale, north-verging recumbent folds and overthrusts, and associated with low greenschist fades metamorphism. 40Ar/39Ar dating of three muscovite samples taken from different localities yields plateau ages of 226.9±0.9 and 219.5±1.4 Ma and an apparent age of 194.5±3.0 Ma. Thus, the late Triassic collision between the Yangtze and Sino-Korean palaeocontinents has been constrained.
基金jointly sponsored by the Public Science and Technology Research Funds Projects,Ministry of Land Resources of the People’s Republic of China(project No.201511017 and 201511022-02)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.YYWF201608)+3 种基金the National Natural Science Foundation of China(Grant No.41402178)Geological Survey Project of the China Geological Survey(project 1212011405040)Golden Dragon Mining Co.Ltd.(project XZJL-2013-JS03)China Scholarship Council
文摘The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.
基金supported by the National Natural Science Foundation of China (40972095)the NationalS & T Major Project (2008ZX05023-03)
文摘The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23-16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous - late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 4~Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.
基金This work was supported by the Ministry of Science and Technology of the People’s Republic of China(Grant No.2016YFC0600109)the Natural Science Foundations of China(Grant No.41521062,41503055).
文摘The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age remains much disputed,which prevents the identification of the relationship between the mineralization and the associated magmatism.In this paper,we quantitatively present the feasibility of making ore mineral 40Ar/39Ar dating and report reliable 40Ar/39Ar ages of lamprophyre groundmass,K-feldspar and sphalerite from the Zhenzigou deposit.Direct and indirect methods are applied to constrain the timing of mineralization,which plays a vital role in discussing the contribution of multistage magmatism to ore formation.The low-potassium sphalerite yielded an inverse isochron age of 232.8±41.5 Ma,which features a relatively large uncertainty.Two lamprophyre groundmasses got reliable inverse isochron ages of 193.2±1.3 Ma and 152.3±1.5 Ma,respectively.K-feldspar yielded a precise inverse isochron age of 134.9±0.9 Ma.These four ages indicate that the mineralization is closely associated with Mesozoic magmatism.Consequently,regarding the cooling age of the earliest Mesozoic Shuangdinggou intrusion(224.2±1.2 Ma)as the initial time of mineralization,we can further constrain the age of the sphalerite to 224–191 Ma.These new and existing geochronological data,combined with the interaction cutting or symbiotic relationship between the lamprophyre veins and ore veins,suggest that the Pb-Zn-Au-Ag mineralization in the Qingchengzi orefield mainly occurred during three periods:the late Triassic(ca.224–193 Ma),the late Jurassic(ca.167–152 Ma)and the early Cretaceous(ca.138–134 Ma).This polymetallic deposits are shown to have been formed during multiple events coinciding with periods of the Mesozoic magmatic activity.In contrast,the Proterozoic magmatism and submarine exhalative and hydrothermal sedimentation in the Liaolaomo paleorift served mainly to transport and concentrate the ore-forming substances at the Liaohe Group with no associated Pb-Zn-Au-Ag mineralization.
基金supported by a Swedish VR grant 2006-2402 to DHC
文摘Metamorphic provinces such as the^1 Ga Grenvillian,~400 Ma Caledonide and Triassic Qinling Provinces often contain rocks with high-pressure assemblages such as eclogites,which formed at mantle depths in subduction zones.These are evidence of the accretion of terranes by subduction of oceans and collision to form large tectonostratigraphic provinces.The Mesoproterozoic Namaqua-Natal Province comprises a number of terranes thought to have been assembled by plate-tectonic processes,but they have generally yielded metamorphic pressures below 5 kbar,corresponding to<20 km,crustal depths,lacking evidence for subduction processes.The Kaaien Terrane in the Namaqua Front contains two large garbenschiefer units with the unusual paragenesis garnet-hornblende-epidote-white mica-plagioclase-ilmenite-quartz.Their protoliths are graywackes influenced by andesitic volcanism during their deposition at^1870 Ma,in a passive margin of the Rehoboth Province or Kaapvaal Craton.Prograde garnet growth dated at 11655 Ma culminated in peak metamorphic conditions of 64530C and 10.40.7 kbar,corresponding to 40 km depth.This is attributed to subduction of these rocks before collision between the overriding arc-related Areachap Terrane,the Kaaien Terrane and the Kaapvaal-Rehoboth cratonic block during the Namaqua orogeny.Exhumation of the garbenschiefer slabs was followed by rapid cooling,as the 11435 Ma argon dates of hornblende and white mica,with closure temperatures^540C and^440C respectively,are the same within error.This was probably due to tectonic juxtaposition of the garbenschiefer slab with much cooler rock units.The exhumation was accommodated along the Trooilapspan-Brakbosch Shear Zone due to ongoing transpression.Other components of the Namaqua Front have distinctly different P-T-t paths,exemplified by greenschist metamorphism in the 1300 Ma Wilgenhoutsdrift Group,and medium-pressure metamorphism in the Areachap Terrane.They were juxtaposed by late-tectonic uplift and transpressional movements.The^40 km depth of garbenschiefer peak metamorphism is the deepest yet found in the Namaqua-Natal Province and strengthens the plate tectonic model of accretion by collision of terranes at the end of a Wilson cycle.The high pressure paragenesis of the garbenschiefer was preserved due to its location in the Namaqua Front,whereas most other parts of the Namaqua-Natal Province were overprinted by 1100–1020 Ma thermal events after the collision events.
基金This study was funded by the National Natural Science Foundation of China (grant numbers 40272094, 40672131) We gratefully acknowledge Mr. Luo Xiuquan and Zhang Youquan from the Petroleum Geology Research and Laboratory Center, Institute of Petroleum Exploration and Development, Beijing, for their work on the 40Ar/39Ar analysis.
文摘Bulk separates of porphyroclastic phengite, neoformed phengite and their mixtures from the Tan-Lu HP mylonites overprinted on the Sulu UHP rocks were analyzed with the 40Ar/39Ar step heating method. Two samples of the neoformed phengite from ultramylonite give 40Ar/39Ar plateau ages of 209.9±1.8 Ma and 214.3±1.8 Ma, which are interpreted as representing cooling times of the TanLu sinistral faulting, and provide geochronological evidence for the syn-orogenic faulting of the Tan-Lu fault zone. The results show that the phengite formed during the retrograde eclogite-facies mylonitization was not contaminated with excess argon and can be used for dating the deformation. Argon closure in previous K-bearing minerals with excess argon under a retrograde HP dry condition is considered to be the reason for lack of excess argon incorporation in the neoformed phengite. Five porphyroclastic phengite samples yield 40Ar/39Ar plateau ages ranging from 666±12 Ma to 307.1±3.3 Ma, which are interpreted as being contaminated with excess argon. Two mixture samples with plateau ages of 239.4±2.1 Ma and 239.3±2.0 Ma show upward-convex age spectra caused by the mixture of older porphyroclastic phengite with excess argon incorporation and younger neoformed phengite without excess argon incorporation. It is demonstrated that excess argon introduced from the previous UHP metamorphism is still preserved in the pre-existing phengite after the Tan-Lu eclogite-facies mylonitization. The intense deformation under HT and HP conditions cannot erase excess argon in the previous phengite totally due to restricted fluid activities. These porphyroclastic phengite previously contaminated with excess argon cannot be used for dating the later HP deformation. This indicates that deformation under a HP dry condition does not play an important role in removing previous 40Are in phengite.
基金supported financially by Special Fund of the first author from the Payame Noor University
文摘The Haftcheshmeh porphyry Cu-Mo-Au deposit in the Arasbaran metallogenic belt (AMB) of NW Iran contains more than 185 Mt of ore, with a grade ranging from 0.3% to 0.4%. It is hosted within a porphyritic diorite to granodiorite intruded into an older gabbro - diorite intrusion. 40Ar/39Ar analyses of primary magmatic hornblende from the granodiorite porphyry and gabbro - diorite show plateau ages of 26.41 ± 0.59 Ma, with an inverse isochron age of 25.9 ± 1.0 Ma and a plateau age of 27.47 ± 0.17 Ma, with an inverse isochron age of 27.48 ± 0.35 Ma for these two rock types, respectively. Comparing these new age data with those from the nearby Sungun (20.69 ± 0.35 Ma) and Kighal porphyry deposits defines a northwest-southeast Cu-Mo-Au mineralization zone extending for 20 km over the time span of-27 to 20 Ma. Geochemically, Haftcheshmeh rocks are calc-alkaline with high potassium affinities with tectonic setting in relation to volcanic arc setting. Large ion lithophile elements (LILE) such as Th, U and K show enrichment on a primitive mantle normalized diagram (specially Pb), and are depleted in high field strength elements (HFSE) such as Ti and Nb, pointing to a mantle magma source contamination with crustal materials by subducted oceanic crust.
文摘The Wangershan gold deposit and spatially related Shangzhuang granite, eastern Shandong Province, have been precisely dated by 40 Ar/ 39 Ar laser incremental heating technique. Magmatic hornblende and biotite, collected from the Shangzhuang granites, yielded well-defined and reproducible plateau ages at 128.1-127.5 and 124.4-124.1 Ma (2 σ ), measuring the cooling ages of the intrusion at ca. 500 ℃ and 300-350 ℃, respectively. Hydrothermal sericite extracted from auriferous vein gave high-quality plateau ages between (120.6±0.3) Ma and (120.0±0.4) Ma (2 σ ). Given the similarity of the closure temperature for argon diffusion (300-350 ℃) in the sericite mineral to the homogenization temperature of primary fluid inclusions in the quartz from gold ores, and the intergrowth of sericite with native gold, present 40 Ar/ 39 Ar sericite ages can be reliably interpreted in terms of the mineralization age for the Wangershan deposit. 40 Ar/ 39 Ar hornblende and biotite ages permit an estimate for the cooling rate of the Shangzhuang granite at about 50 ℃/Ma. There are abundant intermediate-mafic dikes in most gold camps of eastern Shandong, whose ages of formation have been previously constrained mainly at 121-119 Ma. The temporal association between the Shangzhuang granite, the Wangershan gold deposit, and the widespread dikes confirms that intrusive activity, gold mineralization, and dike emplacement in this region were broadly coeval, reflecting significant continental lithosphere thinning and resulting crustal extension of Early Cretaceous in eastern China.
基金financially supported by the National Natural Science Foundation of China (Nos. 41503053, 41630315, 41688103, and 91128203)
文摘A new fully automatic ^40Ar/^39Ar laboratory with a Thermo Scientific ARGUS VI mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparation system (80 mL), a CO2 laser for heating samples, a crusher for extracting fluid inclusions within K-poor minerals and an air reservoir (31 L) and pipette (0.1 mL) system. The ARGUS VI mass spectrometer is operated by the Qtegra Noble Gas software, which can control the peripheral accessories, such as pneumatic valves, CO2 laser and crusher through a PeriCon (peripheral controller). The experimental procedures of atmospheric argon ana- lyses, ^40Ar/^39Ar dating by laser stepwise heating and by progressive crushing in vacuo, can be fully automatically performed. The weighted mean of atmospheric ^40Ar/^36Ar ratios is 302.22+0.03 (1σ, MSWD=0.74, n=200), indicating that air reservoir and pipette system and the whole instrument sys- tem are very stable. This laboratory is a successful pioneer example in China to establish a new no- ble gas laboratory with self-made peripheral accessories expect for the mass spectrometer.
基金funded by the National Natural Science Foundation of China (Nos. 41703054, 41503053)the Guangxi Natural Science Foundation Program (Nos. 2016GXNSFCA380022, 2014GXNSFBA118231)the Chinese Academy of Sciences-Royal Netherlands Academy of Arts and Sciences Joint PhD Training Programme (No. O8PhD-08)
文摘ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples analyzed by laser heating yielded saddle-shaped age spectra with total gas ages of 574.5±2.5 and 562.5=±2.5 Ma. These ages are much older than the reported zircon U-Pb ages (-495 Ma) from Yuka eclogite, indicating the presence of excess ^40Ar. In order to decipher the occur- rence of excess ^40Ar and constrain the age of amphibolite-facies retrogression, two duplicate amphibole samples were further employed for ^40Ar/^39Ar in vacuo crushing analyses. Both samples exhibit similar monotonically declining release spectra, which are characterized by rapid decline of anomalously old apparent ages in the early steps. The data of the late steps yielded concordant apparent ages with pla- teau ages of 460.9±1.2 and 459.6±1.8 Ma. We interpret that gases released in the early steps derive from the significant excess ^40Ar containing secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, whereas those released in the later steps rep- resent the contribution of the small primary fluid inclusions (PFIs).
基金supported by the National Natural Science Foundation of China(Grant No.40473031).
文摘Four international standards,Ga1550,MMhb-1,Lp-6,Bern 4M,and one domesticstandard BT-1 have been intercalibrated.The repeated measurements on MMhb-1 with different massdemonstrate that MMhb-1 is inhomogeneous in age and its average age is 519.8 Ma.The results of Bern4M and Lp-6 reflect that they have an invariable value of^(40)Ar*/^(39)Ar_(k)(F)and the ages weobtained are consensus with their K-Ar age:Lp-6=127.7Ma;Bern 4M=18.2 Ma.Analyses of BT-1 agespectra,Ca/K and Cl/K spectra as well as inverse isochrons indicate that the sample is homogeneousand invariable and keeps close chemically,with its trapped argon isotope composition close to theatmosphere.The dating results show that age values are reproducible and steady,total fusion age,step-heating age,plateau age and isochron age are in accord with each other within the error range(2σ).Therefore,we recommend 28.7 Ma as the calibrated age of BT-1.We also discuss the variationin neutron flux gradients of Beijing 49-2 reactor.It was found that the neutron flux gradientvaries considerably,and more monitors(standard samples)are needed to fix the trend of variation.The coefficient of the 49-2 reactor that transfers the ratio of production rate of^(37)Ar_(Ca)/^(39)Ar_(K) into Ca/K ratio is 1.78.This is different from that reported earlier,2.0,which may be caused by the reconstruction of the reactor.
基金supported by National Natural Science Foundation of China(Grant Nos.41202053&40573021)Fok Ying Tong Education Fund(Grant No.101017)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.CUG120102)Program for New Century Excellent Talents in University(Grant No.NCET-05-0665)
文摘Supergene Mn-oxide deposits are commonly related to thick weathering profiles and form as a result of intense and prolonged weathering of Mn-bearing precursor rocks, processes facilitated by a combination of multiple factors including warm and wet climate, relatively quiescent tectonic environment, and favorable geomorphic setting. Precise age constraints of supergene Mn-oxides may provide valuable information on the climatic, tectonic, and geomorphic conditions prevailing in the geological past. 4~Ar]39Ar laser incremental heating analysis of cryptomelane from the Baye manganese deposit, western Yunnan-Guizhou Plateau, SW China, was conducted to provide numerical constraints on the ages of supergene Mn enrichment and growth rates of Mn-oxide veins. In this study, two Mn-oxide veins of 3-6 cm thickness, termed as Vein A and B, respectively, were col- lected for 4~Ar/39Ar dating. Vein A is subhorizontal and present in fractures parallel to schistosity of the Proterozoic spessartine schists, whereas Vein B is filled in nearly vertical fractures penetrating the schistosity. A combination of optical microscopy, XRD, SEM, and EMP analyses demonstrate that mineral grains extracted from both veins consist of pure, well-crystallized cryptomlane, which has acicular crystal forms and contains 0.96%4.70% K2O. Fourteen cryptomelane subsamples extracted from different growth bands of Vein A yield well-defined plateau ages ranging from 1.35 ± 0.05 to 1.16 ± 0.04 Ma (2or), whereas seven subsamples obtained from Vein B have plateau ages ranging from 1.23 ±0.05 to 1.01 ± 0.04 Ma (20). The age results permit estimation for the growth rates of both veins at ca. 115-153 and 34-67 mm Ma-1, respectively. Distinct growth rates between Veins A and B are likely reflective of different fluid pressures during their formation governed by the orientation of the fractures hosting the veins. The growth rates calculated for both veins are 1-2 orders of magnitude higher than the val- ues (〈1-10 mm Ma-l) estimated for Mn-oxide nodules in supergene Mn deposits elsewhere. The high growth rates obtained for the Baye samples are consistent with direct precipitation of tetravalent Mn-oxides from weathering solution in open cavities or fractures, characterized by incremental growth of Mn-oxide bands from the margin to the center of the cavities or fractures. In contrast, Mn-oxide nodules with low growth rates from other deposits formed through self-oxidation and self-catalization, and grow outwards from the nuclei. In addition, prevalence of warm and humid climate and prolonged tectonic uplift in the Yunnan Plateau may have also partly contributed to the rapid growth of Mn-oxides in the Baye deposit.
基金the National Natural Science Foundation of China (grant No. 40032010B).
文摘Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (-160 Ma), I-type granite in the middle stage (-130 Ma) and anorogenic A-type granite in the late stage (-115 Ma). Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New ^40Ar/^39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A- type granite, Taishanmiao pluton, was emplaced at -115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between -160 Ma and -115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial ^87Sr/^86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratous.