The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jita...The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2–4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10^(−14)s^(−1)to 6.52×10^(−16)s^(−1).The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo–Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.展开更多
Quartz samples collected from the Jinman vein copper deposit in the Lanping Basin of western Yunnan were determined by \{\}\+\{40\}Ar/\{\}\+\{39\}Ar fast neutron activation techniques, and the spectra are characterize...Quartz samples collected from the Jinman vein copper deposit in the Lanping Basin of western Yunnan were determined by \{\}\+\{40\}Ar/\{\}\+\{39\}Ar fast neutron activation techniques, and the spectra are characterized as being saddle\|shaped. The samples yielded a plateau age of \{58.05\}±\{0.54\} Ma, a minimum appearance age of \{56.76\}±\{0.81\} Ma and an isochron age of \{54.30\}±\{0.15\} Ma, the three ages being close to each other, indicating that the ages of the quartz samples so far determined are true and reliable. The plateau age represents the time of formation of Cu\|bearing quartz veins, which is corresponding to Early Himalayan. This age is also consistent with the time at which a tectonically thermal event (60 Ma) took place within the Lanping Basin, Yunnan Province. In consideration of the fact that copper ore and other ore types in the vast area of western Yunnan are concentrated mainly in the Early Himalayan strata, the authors believe that there must have existed some indispensable key factors leading to metallogenesis on a large scale during the Early Himalayan period in western Yunnan and also constraining in union the formation of ore deposits there.展开更多
Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study,...Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study, the ^40Ar/^39Ar and sensitive high resolution ion micro-probe (SHRIMP) U-Pb dating methods were both used and the results compared, particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding, to establish ages that are close to the real emplacements. The results of SHRIMP U-Pb dating for zircon showed a high amount of U, but a very low value for Th/U. The high U amount, coupled with characteristics of inclusions in zircons, indicates that Xuebaoding granites are not suitable for U-Pb dating. Therefore, muscovite in the same granite samples was selected for ^40Ar/^39Ar dating. The ^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding, gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma. The 4^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ^40Ar/^36Ar intercept of 277.0±23.4 (2σ) was very close to the air ratio, indicating that no apparent excess argon contamination was present. These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma, respectively. Through comparison of both dating methods and their results, we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ^40Ar/^39Ar dating without extra Ar. Based on this evidence, as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites, it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma. Moreover, compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt, the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze. Therefore, ^40Ar/^39Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.展开更多
Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages ...Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages of 126 Ma to 135 Ma with a high level of confidence according to the agreement between isochron and plateau ages. The four Ar-Ar ages are relatively consistent within the analytical error. These ages are also consistent with, but more precise than, previous K-Ar and Rb-Sr ages and thus provide better constraints on the time of porphyry formation and associated Cu-Au mineralization along the middle to lower part of the Yangtze metallogenic belt. The ages of 126 to 135 Ma are interpreted to represent the intrusive time of the Shaxi porphyry, so that the Cu-Au mineralization should have occurred later due to the post-magmatic hydrothermal event.展开更多
A new fully automatic ^40Ar/^39Ar laboratory with a Thermo Scientific ARGUS VI mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparatio...A new fully automatic ^40Ar/^39Ar laboratory with a Thermo Scientific ARGUS VI mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparation system (80 mL), a CO2 laser for heating samples, a crusher for extracting fluid inclusions within K-poor minerals and an air reservoir (31 L) and pipette (0.1 mL) system. The ARGUS VI mass spectrometer is operated by the Qtegra Noble Gas software, which can control the peripheral accessories, such as pneumatic valves, CO2 laser and crusher through a PeriCon (peripheral controller). The experimental procedures of atmospheric argon ana- lyses, ^40Ar/^39Ar dating by laser stepwise heating and by progressive crushing in vacuo, can be fully automatically performed. The weighted mean of atmospheric ^40Ar/^36Ar ratios is 302.22+0.03 (1σ, MSWD=0.74, n=200), indicating that air reservoir and pipette system and the whole instrument sys- tem are very stable. This laboratory is a successful pioneer example in China to establish a new no- ble gas laboratory with self-made peripheral accessories expect for the mass spectrometer.展开更多
Four international standards,Ga1550,MMhb-1,Lp-6,Bern 4M,and one domesticstandard BT-1 have been intercalibrated.The repeated measurements on MMhb-1 with different massdemonstrate that MMhb-1 is inhomogeneous in age an...Four international standards,Ga1550,MMhb-1,Lp-6,Bern 4M,and one domesticstandard BT-1 have been intercalibrated.The repeated measurements on MMhb-1 with different massdemonstrate that MMhb-1 is inhomogeneous in age and its average age is 519.8 Ma.The results of Bern4M and Lp-6 reflect that they have an invariable value of^(40)Ar*/^(39)Ar_(k)(F)and the ages weobtained are consensus with their K-Ar age:Lp-6=127.7Ma;Bern 4M=18.2 Ma.Analyses of BT-1 agespectra,Ca/K and Cl/K spectra as well as inverse isochrons indicate that the sample is homogeneousand invariable and keeps close chemically,with its trapped argon isotope composition close to theatmosphere.The dating results show that age values are reproducible and steady,total fusion age,step-heating age,plateau age and isochron age are in accord with each other within the error range(2σ).Therefore,we recommend 28.7 Ma as the calibrated age of BT-1.We also discuss the variationin neutron flux gradients of Beijing 49-2 reactor.It was found that the neutron flux gradientvaries considerably,and more monitors(standard samples)are needed to fix the trend of variation.The coefficient of the 49-2 reactor that transfers the ratio of production rate of^(37)Ar_(Ca)/^(39)Ar_(K) into Ca/K ratio is 1.78.This is different from that reported earlier,2.0,which may be caused by the reconstruction of the reactor.展开更多
ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples a...ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples analyzed by laser heating yielded saddle-shaped age spectra with total gas ages of 574.5±2.5 and 562.5=±2.5 Ma. These ages are much older than the reported zircon U-Pb ages (-495 Ma) from Yuka eclogite, indicating the presence of excess ^40Ar. In order to decipher the occur- rence of excess ^40Ar and constrain the age of amphibolite-facies retrogression, two duplicate amphibole samples were further employed for ^40Ar/^39Ar in vacuo crushing analyses. Both samples exhibit similar monotonically declining release spectra, which are characterized by rapid decline of anomalously old apparent ages in the early steps. The data of the late steps yielded concordant apparent ages with pla- teau ages of 460.9±1.2 and 459.6±1.8 Ma. We interpret that gases released in the early steps derive from the significant excess ^40Ar containing secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, whereas those released in the later steps rep- resent the contribution of the small primary fluid inclusions (PFIs).展开更多
Four samples from a Permian reservoir in the Ordos Basin of North China were separated into twelve fractions in grain sizes of 〈0.5, 0.5-1 and 1-2 μm. Using the ^40Ar-^39Ar step-heating method, all of the fractions ...Four samples from a Permian reservoir in the Ordos Basin of North China were separated into twelve fractions in grain sizes of 〈0.5, 0.5-1 and 1-2 μm. Using the ^40Ar-^39Ar step-heating method, all of the fractions essentially yielded plateau ages ranging from 172.5 to 217.1 Ma. These scattered plateau ages might not have been obtained from pure diagenetic illites but from mixed clay minerals, although the samples were disaggregated using a gentle freeze-thaw cycle to free them of non-clay minerals. A regional thermal event, as suggested by several proxies, led to intensive iHitization as a distinct diagenetic process when the Yanshanian Movement triggered magmatism around the entire North China Block during the Jurassic to Cretaceous. Thermal illites formed during a short time period, whereas detrital illites came from various sources. The scattered plateau ages could have resulted from mixed degassing of thermal and detrital illites. Within one sample, the plateau ages decrease with the diminution of grain sizes, but it is difficult to extrapolate to the detrital-illite-free ages. Because the plateau age is a mixture of ages for thermal and detrital illites, this regression analysis studies the dependence of the plateau ages on the synthetic values of contents and ages of detrital illites instead of on the grain sizes. Comparing the samples to one another, the plateau ages show the same trend among the different grain sizes. Weighted by the contents and ages of detrital illites, linear regression analysis revealed the relationship between the plateau ages and the relative weight proportions. Based on iterated calculations, a thermal event age and a set of weight proportions were derived. The regressed thermal event age is 163.3±1.6 Ma, which coincides with regional thermal activities and links to gas accumulation.展开更多
Radiogenic isotope dating of illitic clays has been widely used to reconstruct thermal and fluid flow events in siliciclastic sedimentary basins,the information of which is critical to investigate mechanisms of hydroc...Radiogenic isotope dating of illitic clays has been widely used to reconstruct thermal and fluid flow events in siliciclastic sedimentary basins,the information of which is critical to investigate mechanisms of hydrocarbon maturation.This study carried out Rb-Sr and^(40)Ar-^(39)Ar dating of authigenic illitic clay samples separated from the Palaeogene sandstone in the northern South China Sea.Our Rb-Sr data further confirm the previously reported three periods of fluid flow events(at 34.5±0.9,31.2±0.6,and 23.6±0.8 Ma,respectively)in the northern South China Sea,which are related to regional episodic tectonism.However,^(40)Ar-^(39)Ar ages of illite obtained in this study are significantly younger than the corresponding Rb-Sr ages.The significantly younger^(40)Ar-^(39)Ar ages were probably due to ^(40)Ar loss caused by later dry heating events on the Hainan Island that have not affected the Rb-Sr isotopic systematics.The inconsistency between Rb-Sr and^(40)Ar-^(39)Ar data should be attributed to different isotopic behaviors of K-Ar and Rb-Sr isotopic systematics in illite.Our results indicate that Rb-Sr isotopic dating method may be a preferential approach for clay dating in geological settings where exist younger dry heating events.展开更多
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emp...Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (-160 Ma), I-type granite in the middle stage (-130 Ma) and anorogenic A-type granite in the late stage (-115 Ma). Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New ^40Ar/^39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A- type granite, Taishanmiao pluton, was emplaced at -115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between -160 Ma and -115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial ^87Sr/^86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratous.展开更多
The NE-striking Jiamusi-Yitong fault zone(JYFZ) is the most important branch in the northern segment of the Tancheng-Lujiang fault zone. The precise shearing time of its large-scale sinistral strike-slip has yet to de...The NE-striking Jiamusi-Yitong fault zone(JYFZ) is the most important branch in the northern segment of the Tancheng-Lujiang fault zone. The precise shearing time of its large-scale sinistral strike-slip has yet to determined and must be constrained. Detailed field investigations and comprehensive analyses show that strike-slip faults or ductile shear belts exist as origination structures along the western region of Yitong Graben. The strike of the shear belts trend to the NE-SW with steep mylonitic foliation. The zircon U-Pb dating result for the granite was 264.1±1 Ma in the ductile shear belt of the JYFZ. The microstructural observation(rotated feldspar porphyroclasts, S-C fabrics, and quartz c-axis fabrics, etc.) demonstrated the sinistral shearing of the ductile shear zones. Moreover, the recrystallized quartz types show a transitional stage of the subgrain rotation toward the recrystallization of the grain boundary migration(SR-GBM). Therefore, we suggest that the metamorphic grade of the shear zone in the ductile shear zones should have reached high greenschist facies conditions, and the deformation temperatures should approximately 450-500°C, which is obviously higher than the blocking temperature of muscovite(300-400°C). Hence, the ^40Ar/^39Ar isochron age of muscovite from ductile shear zones should be a cooling age(162.7±1 Ma). We infer that the sinistral strike-slipping event at the JYFZ occurred in the late Jurassic period, and it was further inferred from the ages of the main geological events in this region that the second sinistral strike-slip age of the Tancheng-Lujiang fault zone occurred during the period of tectonic movements in the Circum-Pacific tectonic domain. This discovery also indicates the age of the Tancheng-Lujiang fault zone that stretches to northeastern China. The initiation of the JYFZ in the late Jurassic is related to the speed and direction of oblique subduction of the west Pacific Plate under the Eurasian continent and is responsible for collision during the Jurassic period.展开更多
Polymetamorphic units are important constituents of continent-continent collisional orogens,and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision.This study ...Polymetamorphic units are important constituents of continent-continent collisional orogens,and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision.This study reports the metamorphic conditions and evolution of the Dorud-Azna metamorphic units in the central part of the Sanandaj-Sirjan zone(SSZ),Iran.Here,new geothermobarometry results are integrated with ^(40)Ar/^(39)Ar mineral and Th-U-Pb monazite and thorite ages to provide new insight of polyphase metamorphism in the two different basement units of the SSZ,the lower Galeh-Doz orthogneiss and higher Amphibolite-Metagabbro units.In the Amphibolite-Metagabbro unit,staurolite micaschist underwent a prograde P-T evolution from 640±20℃/6.2±0.8 kbar in garnet cores(M1)to 680±20℃/7.2±1.0 kbar in garnet rims(M2).Three Th-U-Pb monazite ages of 306±5 Ma,322±28 Ma and 336±39 Ma from the garnet-micaschists testify the Carboniferous age of M1 metamorphism.In the same unit,the metagabbro records P-T conditions of 4.0±0.8 kbar and 580±50℃ in the(magmatic)amphibole core(Late Carboniferous intrusion)to 7.5±0.7 kbar and 700±20℃ in the amphibole rim indicating a prograde P-T path during subsequent burial(M1).New ^(40)Ar/^(39)Ar dating of white mica from the staurolite micaschist yielded a staircase pattern ranging from 36±12 Ma to 170±2 Ma.This implies polymetamorphism with a minimum Late Jurassic cooling age through the Ar retention temperature of ca.425±25℃ after M2 metamorphism and a Paleogene low-grade metamorphic overprint(M3),while ^(40)Ar/^(39)Ar white mica dating of garnet micaschist yielded a plateau age of 137.84±0.65 Ma.We therefore interpret the amphibolite-grade metamorphism M2 to have predated 170 Ma and is likely between 180 and 200 Ma.Furthermore,it is overprinted at about 36 Ma under retrogressive low-grade M3 metamorphism(at temperatures of~350-240℃)during final shortening and exhumation.In the underlying Galeh-Doz unit,the Panafrican granitic orthogneiss intruded at P-T conditions of 3.2±4 kbar and 700±20℃,then it was metamorphosed and deformed at 600±50℃ and 2.0±0.8 kbar(metamorphic stage M1)prior to Late Carboniferous intrusion of mafic dikes.^(40)Ar/^(39)Ar dating of amphibole from the Galeh-Doz orthogneiss gave plateau-like steps between 260 and 270 Ma,representing the age of cooling through ca.500℃ after the M1 metamorphic event.Interestingly,the results of this study demonstrate polyphase metamorphic histories in both the Galeh-Doz orthogneiss and Amphibolite-Metagabbro units at different P-T conditions and final thickskinned Paleogene emplacement of these units over the underlying low-grade metamorphic June Complex.Our findings suggest that both units are affected by high-T/low-P Late Carboniferous orogenic metamorphism along with the bimodal magmatism,as result of rifting.We propose that the Early Jurassic amphibolite-grade M2 metamorphism of the SSZ is correlated with the initial subduction of the Neotethyan Ocean.Eventually,the investigated units reflect various stages of a Wilson cycle,from rifting to initiation of the subduction in final plate collision.展开更多
基金financially supported by the China Geological Survey Scientific Research Project(Grant Nos.DD20190167 and DD20190053)the National Natural Science Foundation of China(Grant No.42172259).
文摘The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2–4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10^(−14)s^(−1)to 6.52×10^(−16)s^(−1).The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo–Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.
基金ThisresearchprojectwasfinanciallysupportedjointlybythefundsforProject973undertheMajorBasicResearchProgramofthePeople’sRepublicofChina (GrantNo .G19990 4 32 0 8) the 1997"One hundredTopQualifiedPersonnelProgram"sponsoredbytheChineseAcademyofSciencesand
文摘Quartz samples collected from the Jinman vein copper deposit in the Lanping Basin of western Yunnan were determined by \{\}\+\{40\}Ar/\{\}\+\{39\}Ar fast neutron activation techniques, and the spectra are characterized as being saddle\|shaped. The samples yielded a plateau age of \{58.05\}±\{0.54\} Ma, a minimum appearance age of \{56.76\}±\{0.81\} Ma and an isochron age of \{54.30\}±\{0.15\} Ma, the three ages being close to each other, indicating that the ages of the quartz samples so far determined are true and reliable. The plateau age represents the time of formation of Cu\|bearing quartz veins, which is corresponding to Early Himalayan. This age is also consistent with the time at which a tectonically thermal event (60 Ma) took place within the Lanping Basin, Yunnan Province. In consideration of the fact that copper ore and other ore types in the vast area of western Yunnan are concentrated mainly in the Early Himalayan strata, the authors believe that there must have existed some indispensable key factors leading to metallogenesis on a large scale during the Early Himalayan period in western Yunnan and also constraining in union the formation of ore deposits there.
基金funded by the Major State Basic Research Program of China (2009CB421008)the Program for the New Century Excellent Talents in China(NCET-07-0771) +1 种基金the Program for Changjiang Scholars and Innovative Research Team in University,"111"Project(No.B07011)State Key Laboratory of Geological Processes and Mineral Resources(No.GPMR200838,GPMR0736)
文摘Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study, the ^40Ar/^39Ar and sensitive high resolution ion micro-probe (SHRIMP) U-Pb dating methods were both used and the results compared, particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding, to establish ages that are close to the real emplacements. The results of SHRIMP U-Pb dating for zircon showed a high amount of U, but a very low value for Th/U. The high U amount, coupled with characteristics of inclusions in zircons, indicates that Xuebaoding granites are not suitable for U-Pb dating. Therefore, muscovite in the same granite samples was selected for ^40Ar/^39Ar dating. The ^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding, gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma. The 4^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ^40Ar/^36Ar intercept of 277.0±23.4 (2σ) was very close to the air ratio, indicating that no apparent excess argon contamination was present. These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma, respectively. Through comparison of both dating methods and their results, we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ^40Ar/^39Ar dating without extra Ar. Based on this evidence, as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites, it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma. Moreover, compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt, the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze. Therefore, ^40Ar/^39Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.
基金This study is supported by funds from the Ministry of Science and Technology of China (2006CB403500) ; National Natural Science Foundation of China (40473021).
文摘Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages of 126 Ma to 135 Ma with a high level of confidence according to the agreement between isochron and plateau ages. The four Ar-Ar ages are relatively consistent within the analytical error. These ages are also consistent with, but more precise than, previous K-Ar and Rb-Sr ages and thus provide better constraints on the time of porphyry formation and associated Cu-Au mineralization along the middle to lower part of the Yangtze metallogenic belt. The ages of 126 to 135 Ma are interpreted to represent the intrusive time of the Shaxi porphyry, so that the Cu-Au mineralization should have occurred later due to the post-magmatic hydrothermal event.
基金financially supported by the National Natural Science Foundation of China (Nos. 41503053, 41630315, 41688103, and 91128203)
文摘A new fully automatic ^40Ar/^39Ar laboratory with a Thermo Scientific ARGUS VI mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparation system (80 mL), a CO2 laser for heating samples, a crusher for extracting fluid inclusions within K-poor minerals and an air reservoir (31 L) and pipette (0.1 mL) system. The ARGUS VI mass spectrometer is operated by the Qtegra Noble Gas software, which can control the peripheral accessories, such as pneumatic valves, CO2 laser and crusher through a PeriCon (peripheral controller). The experimental procedures of atmospheric argon ana- lyses, ^40Ar/^39Ar dating by laser stepwise heating and by progressive crushing in vacuo, can be fully automatically performed. The weighted mean of atmospheric ^40Ar/^36Ar ratios is 302.22+0.03 (1σ, MSWD=0.74, n=200), indicating that air reservoir and pipette system and the whole instrument sys- tem are very stable. This laboratory is a successful pioneer example in China to establish a new no- ble gas laboratory with self-made peripheral accessories expect for the mass spectrometer.
基金supported by the National Natural Science Foundation of China(Grant No.40473031).
文摘Four international standards,Ga1550,MMhb-1,Lp-6,Bern 4M,and one domesticstandard BT-1 have been intercalibrated.The repeated measurements on MMhb-1 with different massdemonstrate that MMhb-1 is inhomogeneous in age and its average age is 519.8 Ma.The results of Bern4M and Lp-6 reflect that they have an invariable value of^(40)Ar*/^(39)Ar_(k)(F)and the ages weobtained are consensus with their K-Ar age:Lp-6=127.7Ma;Bern 4M=18.2 Ma.Analyses of BT-1 agespectra,Ca/K and Cl/K spectra as well as inverse isochrons indicate that the sample is homogeneousand invariable and keeps close chemically,with its trapped argon isotope composition close to theatmosphere.The dating results show that age values are reproducible and steady,total fusion age,step-heating age,plateau age and isochron age are in accord with each other within the error range(2σ).Therefore,we recommend 28.7 Ma as the calibrated age of BT-1.We also discuss the variationin neutron flux gradients of Beijing 49-2 reactor.It was found that the neutron flux gradientvaries considerably,and more monitors(standard samples)are needed to fix the trend of variation.The coefficient of the 49-2 reactor that transfers the ratio of production rate of^(37)Ar_(Ca)/^(39)Ar_(K) into Ca/K ratio is 1.78.This is different from that reported earlier,2.0,which may be caused by the reconstruction of the reactor.
基金funded by the National Natural Science Foundation of China (Nos. 41703054, 41503053)the Guangxi Natural Science Foundation Program (Nos. 2016GXNSFCA380022, 2014GXNSFBA118231)the Chinese Academy of Sciences-Royal Netherlands Academy of Arts and Sciences Joint PhD Training Programme (No. O8PhD-08)
文摘ABSTRACT: The joint methods of ^40Ar/^39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples analyzed by laser heating yielded saddle-shaped age spectra with total gas ages of 574.5±2.5 and 562.5=±2.5 Ma. These ages are much older than the reported zircon U-Pb ages (-495 Ma) from Yuka eclogite, indicating the presence of excess ^40Ar. In order to decipher the occur- rence of excess ^40Ar and constrain the age of amphibolite-facies retrogression, two duplicate amphibole samples were further employed for ^40Ar/^39Ar in vacuo crushing analyses. Both samples exhibit similar monotonically declining release spectra, which are characterized by rapid decline of anomalously old apparent ages in the early steps. The data of the late steps yielded concordant apparent ages with pla- teau ages of 460.9±1.2 and 459.6±1.8 Ma. We interpret that gases released in the early steps derive from the significant excess ^40Ar containing secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, whereas those released in the later steps rep- resent the contribution of the small primary fluid inclusions (PFIs).
基金supported by the National Natural Science Foundation of China(No.40572081)the Chinese Academy of Sciences(No.KZCX1-SW-18)
文摘Four samples from a Permian reservoir in the Ordos Basin of North China were separated into twelve fractions in grain sizes of 〈0.5, 0.5-1 and 1-2 μm. Using the ^40Ar-^39Ar step-heating method, all of the fractions essentially yielded plateau ages ranging from 172.5 to 217.1 Ma. These scattered plateau ages might not have been obtained from pure diagenetic illites but from mixed clay minerals, although the samples were disaggregated using a gentle freeze-thaw cycle to free them of non-clay minerals. A regional thermal event, as suggested by several proxies, led to intensive iHitization as a distinct diagenetic process when the Yanshanian Movement triggered magmatism around the entire North China Block during the Jurassic to Cretaceous. Thermal illites formed during a short time period, whereas detrital illites came from various sources. The scattered plateau ages could have resulted from mixed degassing of thermal and detrital illites. Within one sample, the plateau ages decrease with the diminution of grain sizes, but it is difficult to extrapolate to the detrital-illite-free ages. Because the plateau age is a mixture of ages for thermal and detrital illites, this regression analysis studies the dependence of the plateau ages on the synthetic values of contents and ages of detrital illites instead of on the grain sizes. Comparing the samples to one another, the plateau ages show the same trend among the different grain sizes. Weighted by the contents and ages of detrital illites, linear regression analysis revealed the relationship between the plateau ages and the relative weight proportions. Based on iterated calculations, a thermal event age and a set of weight proportions were derived. The regressed thermal event age is 163.3±1.6 Ma, which coincides with regional thermal activities and links to gas accumulation.
基金supported by the National Natural Science Foundation of China(Nos.42072142,41702121,U19B2007)。
文摘Radiogenic isotope dating of illitic clays has been widely used to reconstruct thermal and fluid flow events in siliciclastic sedimentary basins,the information of which is critical to investigate mechanisms of hydrocarbon maturation.This study carried out Rb-Sr and^(40)Ar-^(39)Ar dating of authigenic illitic clay samples separated from the Palaeogene sandstone in the northern South China Sea.Our Rb-Sr data further confirm the previously reported three periods of fluid flow events(at 34.5±0.9,31.2±0.6,and 23.6±0.8 Ma,respectively)in the northern South China Sea,which are related to regional episodic tectonism.However,^(40)Ar-^(39)Ar ages of illite obtained in this study are significantly younger than the corresponding Rb-Sr ages.The significantly younger^(40)Ar-^(39)Ar ages were probably due to ^(40)Ar loss caused by later dry heating events on the Hainan Island that have not affected the Rb-Sr isotopic systematics.The inconsistency between Rb-Sr and^(40)Ar-^(39)Ar data should be attributed to different isotopic behaviors of K-Ar and Rb-Sr isotopic systematics in illite.Our results indicate that Rb-Sr isotopic dating method may be a preferential approach for clay dating in geological settings where exist younger dry heating events.
基金the National Natural Science Foundation of China (grant No. 40032010B).
文摘Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (-160 Ma), I-type granite in the middle stage (-130 Ma) and anorogenic A-type granite in the late stage (-115 Ma). Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New ^40Ar/^39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A- type granite, Taishanmiao pluton, was emplaced at -115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between -160 Ma and -115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial ^87Sr/^86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratous.
基金funded by the National Key R&D Program of China (Grant No. 2017YFC0601300–01)973 Program (Grant 2013CB429802)NSFC (Grant 41102140,41303175)
文摘The NE-striking Jiamusi-Yitong fault zone(JYFZ) is the most important branch in the northern segment of the Tancheng-Lujiang fault zone. The precise shearing time of its large-scale sinistral strike-slip has yet to determined and must be constrained. Detailed field investigations and comprehensive analyses show that strike-slip faults or ductile shear belts exist as origination structures along the western region of Yitong Graben. The strike of the shear belts trend to the NE-SW with steep mylonitic foliation. The zircon U-Pb dating result for the granite was 264.1±1 Ma in the ductile shear belt of the JYFZ. The microstructural observation(rotated feldspar porphyroclasts, S-C fabrics, and quartz c-axis fabrics, etc.) demonstrated the sinistral shearing of the ductile shear zones. Moreover, the recrystallized quartz types show a transitional stage of the subgrain rotation toward the recrystallization of the grain boundary migration(SR-GBM). Therefore, we suggest that the metamorphic grade of the shear zone in the ductile shear zones should have reached high greenschist facies conditions, and the deformation temperatures should approximately 450-500°C, which is obviously higher than the blocking temperature of muscovite(300-400°C). Hence, the ^40Ar/^39Ar isochron age of muscovite from ductile shear zones should be a cooling age(162.7±1 Ma). We infer that the sinistral strike-slipping event at the JYFZ occurred in the late Jurassic period, and it was further inferred from the ages of the main geological events in this region that the second sinistral strike-slip age of the Tancheng-Lujiang fault zone occurred during the period of tectonic movements in the Circum-Pacific tectonic domain. This discovery also indicates the age of the Tancheng-Lujiang fault zone that stretches to northeastern China. The initiation of the JYFZ in the late Jurassic is related to the speed and direction of oblique subduction of the west Pacific Plate under the Eurasian continent and is responsible for collision during the Jurassic period.
基金support by the Afro-Asiatisches Institut,Salzburg for her Ph D thesis at the Salzburg University。
文摘Polymetamorphic units are important constituents of continent-continent collisional orogens,and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision.This study reports the metamorphic conditions and evolution of the Dorud-Azna metamorphic units in the central part of the Sanandaj-Sirjan zone(SSZ),Iran.Here,new geothermobarometry results are integrated with ^(40)Ar/^(39)Ar mineral and Th-U-Pb monazite and thorite ages to provide new insight of polyphase metamorphism in the two different basement units of the SSZ,the lower Galeh-Doz orthogneiss and higher Amphibolite-Metagabbro units.In the Amphibolite-Metagabbro unit,staurolite micaschist underwent a prograde P-T evolution from 640±20℃/6.2±0.8 kbar in garnet cores(M1)to 680±20℃/7.2±1.0 kbar in garnet rims(M2).Three Th-U-Pb monazite ages of 306±5 Ma,322±28 Ma and 336±39 Ma from the garnet-micaschists testify the Carboniferous age of M1 metamorphism.In the same unit,the metagabbro records P-T conditions of 4.0±0.8 kbar and 580±50℃ in the(magmatic)amphibole core(Late Carboniferous intrusion)to 7.5±0.7 kbar and 700±20℃ in the amphibole rim indicating a prograde P-T path during subsequent burial(M1).New ^(40)Ar/^(39)Ar dating of white mica from the staurolite micaschist yielded a staircase pattern ranging from 36±12 Ma to 170±2 Ma.This implies polymetamorphism with a minimum Late Jurassic cooling age through the Ar retention temperature of ca.425±25℃ after M2 metamorphism and a Paleogene low-grade metamorphic overprint(M3),while ^(40)Ar/^(39)Ar white mica dating of garnet micaschist yielded a plateau age of 137.84±0.65 Ma.We therefore interpret the amphibolite-grade metamorphism M2 to have predated 170 Ma and is likely between 180 and 200 Ma.Furthermore,it is overprinted at about 36 Ma under retrogressive low-grade M3 metamorphism(at temperatures of~350-240℃)during final shortening and exhumation.In the underlying Galeh-Doz unit,the Panafrican granitic orthogneiss intruded at P-T conditions of 3.2±4 kbar and 700±20℃,then it was metamorphosed and deformed at 600±50℃ and 2.0±0.8 kbar(metamorphic stage M1)prior to Late Carboniferous intrusion of mafic dikes.^(40)Ar/^(39)Ar dating of amphibole from the Galeh-Doz orthogneiss gave plateau-like steps between 260 and 270 Ma,representing the age of cooling through ca.500℃ after the M1 metamorphic event.Interestingly,the results of this study demonstrate polyphase metamorphic histories in both the Galeh-Doz orthogneiss and Amphibolite-Metagabbro units at different P-T conditions and final thickskinned Paleogene emplacement of these units over the underlying low-grade metamorphic June Complex.Our findings suggest that both units are affected by high-T/low-P Late Carboniferous orogenic metamorphism along with the bimodal magmatism,as result of rifting.We propose that the Early Jurassic amphibolite-grade M2 metamorphism of the SSZ is correlated with the initial subduction of the Neotethyan Ocean.Eventually,the investigated units reflect various stages of a Wilson cycle,from rifting to initiation of the subduction in final plate collision.