Volcanism along the northwest boundary of the Arabian Plate found in the Gaziantep Basin, southeast Turkey, is of Miocene age and is of alkaline and calc-alkaline basic composition. The rare earth element data for bot...Volcanism along the northwest boundary of the Arabian Plate found in the Gaziantep Basin, southeast Turkey, is of Miocene age and is of alkaline and calc-alkaline basic composition. The rare earth element data for both compositional series indicates spinel-peridotite source areas. The rare earth and trace elements of the alkaline lavas originate from a highly primitive and slightiy contaminated asthenospheric mantle; those of the calc-alkaline lavas originate from a highly heterogeneous, asthenospheric, and lithospheric mantle source. Partial melting and magmatic differentiation processes played a role in the formation of the petrological features of these volcanics. These rocks form two groups on the basis of their 87Sr[S6Sr and 143Nd/lI4Nd isotopic compositions in addition to their classifications based on their chemical compositions (alkaline and calc-alkaline). These isotopic differences indicate a dissimilar parental magma. Therefore, high Nd isotope samples imply a previously formed and highly primitive mantle whereas low Nd isotope samples may indicate comparable partial melting of an enriched heterogeneous shallow mantle. Other isotopic changes that do not conform to the chemical features of these lavas are partly related to the various tectonic events of the region, such as the Dead Sea Fault System and the Bitlis Suture Zone.展开更多
End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Severa...End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with ∂<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the ∂<sup>13</sup>C-Variation.展开更多
This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposit...This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposited on the Arabian Platform, Arabian Plate. Its focus is mainly directed on gases released by both processes (CO2, SO2, NOx, HCl, HF) and the relating acids, challenged by experiments and microscopic analysis of grain mounts and thin sections that reveal chemical instability of quartz and ultrastable heavy minerals (i.e. tourmaline) under high acidity (pH °C - 90°C). According to Lopatin’s Time/Temperatur-Index the Lower Cambrian reached the onset of hydrocarbon generation (liquid window) during the Lower Early Cretaceous. Unstable heavy minerals (apatite, garnet, hornblende, epidote, zoisite/clinozoisite) are generally absent in quartz arenites while in arkosic sandstones of marine environment carbonate cement and primary clay minerals (illite) provide conservation. As known since the eighties, the K/T-event’s indirect effects had global influence on Earth’s surface sediments and atmospheric chemistry by wildfires, hot whirl storms, acidic “sturz rain”, dust, soot, darkness, loss of photosynthesis, toxic metals, gases and relating acids. All of them are here concerned and applied to major impacting throughout the Early Paleozoic using the impact data of Price (2001);while superplume volcanism during Cretaceous led to the opening of the South Atlantic accompanied by the cyclic outflow of the Para?a/Etendeka Flood Basalts and relating gases in a gigantic scale (137 - 127 Ma). Assuming that the gases cause similar global effects on Earth’s surface sediments, an according result may be expected in form of quartz arenites and their sequence-analytical patterns (cyclic SBs, MFSs).*展开更多
A significant phase of global warming appeared during the Llandovery and productive Silurian hot shale was preserved all over the world.The lower Silurian shale is the main effective source rock for most of the Paleoz...A significant phase of global warming appeared during the Llandovery and productive Silurian hot shale was preserved all over the world.The lower Silurian shale is the main effective source rock for most of the Paleozoic hydrocarbon in Iran and the Arabian platform.Silurian hot shales have become prospective resources for new energy such as shale gas.The regional distribution and shale gas potential of the lower Silurian hot shale in southern Iran and the Arabian plate are determined using outcrops and exploration well samples data from previous studies.The studied area has a high organic content(on average more than 2%),maximum burial depth is 5300 m,shale thickness of 30-200 m,organic matter maturities(most comparable),clay minerals content ranging from 20%to 57%,quartz content ranges from 20%to 49%,feldspar content ranges from 10%to 15%and calcite content ranges from 1.48%to 5%which all favor shale gas generation and accumulation.We concluded that southern Iran and east-central Saudi Arabia are two of the most sustainable and favorable locations for shale gas exploration and production for lower Silurian hot shale after assessing all of the key characteristics.展开更多
After sea level rises during the Early Cretaceous, upper parts of the Khami Group sediments (Fahliyan, Gadvan, and Dariyan Formations) deposited over Jurassic sediments. The Lower Cretaceous (Aptian) Dariyan Forma...After sea level rises during the Early Cretaceous, upper parts of the Khami Group sediments (Fahliyan, Gadvan, and Dariyan Formations) deposited over Jurassic sediments. The Lower Cretaceous (Aptian) Dariyan Formation (equivalent to the Shu'aiba Formation and Hawar Member of the Arabian Plate) carbonates, which have hydrocarbon reservoir potential, form the uppermost portion of the Khami Group that unconformably overlays the Gadvan Formation and was unconformably covered by the Kazhdumi Formation and Burgan sandstones. Detailed paleontological, sedimentological, and well log analysis were performed on seven wells from Qeshm Island and offshore in order to analyze the sequence stratigraphy of this interval and correlate with other studies of the Dariyan Formation in this region. According to this study, the Dariyan Formation contains 14 carbonate lithofacies, which deposited on a ramp system that deepened in both directions (NE-wells 5, 6 and SWIwells 1, 2). Sequence stratigraphy led to recognition of 5 Aptian third-order sequences toward the Bab Basin (SW-well 1) and 4 Aptian third-order sequences toward Qeshm Island (NE-wells 5 and 6) so these areas show higher gamma on the gamma ray logs and probably have higher source rock potential. Other wells (wells 2-4 and 7) mainly deposited in shallower ramp systems and contain 3 Aptian third-order sequences. On the other hand, rudstone and boundstone lithofacies of studied wells have higher reservoir potential and were deposited during Apt 3 and Apt 4 sequences of the Arabian Plate. The Dariyan Formation in Qeshm Island (well 6) and adjacent well (well 5) was deposited in an intrashelf basin that should be classified as a new intrashelf basin in future Aptian paleogeographic maps. We interpret that salt-related differential subsidence, crustal warping, and reactivation of basement faults of the Arabian Plate boundary were responsible for the creation of the intrashelf basin in the Qeshm area.展开更多
The Tertiary granitic intrusive body(~21 Ma) of the Jabal Sabir area was emplaced during the early stages of the Red Sea opening.This intrusive body occupies the southern sector of Taiz City.It is triangular in shape...The Tertiary granitic intrusive body(~21 Ma) of the Jabal Sabir area was emplaced during the early stages of the Red Sea opening.This intrusive body occupies the southern sector of Taiz City.It is triangular in shape,affected by two major faults,one of which is in parallel to the Gulf of Aden,and the other is in parallel to the eastern margin of the Red Sea coast.The petrogenesis of such a type of intrusion provides additional information on the origin of the Oligo-Miocene magmatic activity in relation to the rifting tectonics and evolution of this part of the Arabian Shield.The granitic body of Jabal Sabir belongs to the alkaline or peralkaline suite of A-type granites.It is enriched in the REE.The tight bundle plot of its REE pattern reflects neither tectonism nor metamorphism.This granite body is characterized by high alkali(8.7%-10.13%),high-field strength elements(HFSE),but low Sr and Ba and high Zn contents.The abundance of xenoliths from the neighboring country rocks and prophyritic texture of the Jabal Sabir granite body indicate shallow depths of intrusion.The major and trace elements data revealed a fractional crystallization origin,probably with small amounts of crustal contamination.It is interpreted that the Jabal Sabir intrusion represents an anorogenic granite pertaining to the A-type,formed in a within-plate environment under an extensional tectonic setting pertaining to rift-related granites.展开更多
基金the University of Firat Scientific Research Projects Unit(FUBAP)for research support(Project number MF-13.06)
文摘Volcanism along the northwest boundary of the Arabian Plate found in the Gaziantep Basin, southeast Turkey, is of Miocene age and is of alkaline and calc-alkaline basic composition. The rare earth element data for both compositional series indicates spinel-peridotite source areas. The rare earth and trace elements of the alkaline lavas originate from a highly primitive and slightiy contaminated asthenospheric mantle; those of the calc-alkaline lavas originate from a highly heterogeneous, asthenospheric, and lithospheric mantle source. Partial melting and magmatic differentiation processes played a role in the formation of the petrological features of these volcanics. These rocks form two groups on the basis of their 87Sr[S6Sr and 143Nd/lI4Nd isotopic compositions in addition to their classifications based on their chemical compositions (alkaline and calc-alkaline). These isotopic differences indicate a dissimilar parental magma. Therefore, high Nd isotope samples imply a previously formed and highly primitive mantle whereas low Nd isotope samples may indicate comparable partial melting of an enriched heterogeneous shallow mantle. Other isotopic changes that do not conform to the chemical features of these lavas are partly related to the various tectonic events of the region, such as the Dead Sea Fault System and the Bitlis Suture Zone.
文摘End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with ∂<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the ∂<sup>13</sup>C-Variation.
文摘This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposited on the Arabian Platform, Arabian Plate. Its focus is mainly directed on gases released by both processes (CO2, SO2, NOx, HCl, HF) and the relating acids, challenged by experiments and microscopic analysis of grain mounts and thin sections that reveal chemical instability of quartz and ultrastable heavy minerals (i.e. tourmaline) under high acidity (pH °C - 90°C). According to Lopatin’s Time/Temperatur-Index the Lower Cambrian reached the onset of hydrocarbon generation (liquid window) during the Lower Early Cretaceous. Unstable heavy minerals (apatite, garnet, hornblende, epidote, zoisite/clinozoisite) are generally absent in quartz arenites while in arkosic sandstones of marine environment carbonate cement and primary clay minerals (illite) provide conservation. As known since the eighties, the K/T-event’s indirect effects had global influence on Earth’s surface sediments and atmospheric chemistry by wildfires, hot whirl storms, acidic “sturz rain”, dust, soot, darkness, loss of photosynthesis, toxic metals, gases and relating acids. All of them are here concerned and applied to major impacting throughout the Early Paleozoic using the impact data of Price (2001);while superplume volcanism during Cretaceous led to the opening of the South Atlantic accompanied by the cyclic outflow of the Para?a/Etendeka Flood Basalts and relating gases in a gigantic scale (137 - 127 Ma). Assuming that the gases cause similar global effects on Earth’s surface sediments, an according result may be expected in form of quartz arenites and their sequence-analytical patterns (cyclic SBs, MFSs).*
文摘A significant phase of global warming appeared during the Llandovery and productive Silurian hot shale was preserved all over the world.The lower Silurian shale is the main effective source rock for most of the Paleozoic hydrocarbon in Iran and the Arabian platform.Silurian hot shales have become prospective resources for new energy such as shale gas.The regional distribution and shale gas potential of the lower Silurian hot shale in southern Iran and the Arabian plate are determined using outcrops and exploration well samples data from previous studies.The studied area has a high organic content(on average more than 2%),maximum burial depth is 5300 m,shale thickness of 30-200 m,organic matter maturities(most comparable),clay minerals content ranging from 20%to 57%,quartz content ranges from 20%to 49%,feldspar content ranges from 10%to 15%and calcite content ranges from 1.48%to 5%which all favor shale gas generation and accumulation.We concluded that southern Iran and east-central Saudi Arabia are two of the most sustainable and favorable locations for shale gas exploration and production for lower Silurian hot shale after assessing all of the key characteristics.
基金the National Iranian Oil Company,Exploration Directorate,for the support of this researchthe Department of Geology at Ferdowsi University of Mashhad for their support
文摘After sea level rises during the Early Cretaceous, upper parts of the Khami Group sediments (Fahliyan, Gadvan, and Dariyan Formations) deposited over Jurassic sediments. The Lower Cretaceous (Aptian) Dariyan Formation (equivalent to the Shu'aiba Formation and Hawar Member of the Arabian Plate) carbonates, which have hydrocarbon reservoir potential, form the uppermost portion of the Khami Group that unconformably overlays the Gadvan Formation and was unconformably covered by the Kazhdumi Formation and Burgan sandstones. Detailed paleontological, sedimentological, and well log analysis were performed on seven wells from Qeshm Island and offshore in order to analyze the sequence stratigraphy of this interval and correlate with other studies of the Dariyan Formation in this region. According to this study, the Dariyan Formation contains 14 carbonate lithofacies, which deposited on a ramp system that deepened in both directions (NE-wells 5, 6 and SWIwells 1, 2). Sequence stratigraphy led to recognition of 5 Aptian third-order sequences toward the Bab Basin (SW-well 1) and 4 Aptian third-order sequences toward Qeshm Island (NE-wells 5 and 6) so these areas show higher gamma on the gamma ray logs and probably have higher source rock potential. Other wells (wells 2-4 and 7) mainly deposited in shallower ramp systems and contain 3 Aptian third-order sequences. On the other hand, rudstone and boundstone lithofacies of studied wells have higher reservoir potential and were deposited during Apt 3 and Apt 4 sequences of the Arabian Plate. The Dariyan Formation in Qeshm Island (well 6) and adjacent well (well 5) was deposited in an intrashelf basin that should be classified as a new intrashelf basin in future Aptian paleogeographic maps. We interpret that salt-related differential subsidence, crustal warping, and reactivation of basement faults of the Arabian Plate boundary were responsible for the creation of the intrashelf basin in the Qeshm area.
文摘The Tertiary granitic intrusive body(~21 Ma) of the Jabal Sabir area was emplaced during the early stages of the Red Sea opening.This intrusive body occupies the southern sector of Taiz City.It is triangular in shape,affected by two major faults,one of which is in parallel to the Gulf of Aden,and the other is in parallel to the eastern margin of the Red Sea coast.The petrogenesis of such a type of intrusion provides additional information on the origin of the Oligo-Miocene magmatic activity in relation to the rifting tectonics and evolution of this part of the Arabian Shield.The granitic body of Jabal Sabir belongs to the alkaline or peralkaline suite of A-type granites.It is enriched in the REE.The tight bundle plot of its REE pattern reflects neither tectonism nor metamorphism.This granite body is characterized by high alkali(8.7%-10.13%),high-field strength elements(HFSE),but low Sr and Ba and high Zn contents.The abundance of xenoliths from the neighboring country rocks and prophyritic texture of the Jabal Sabir granite body indicate shallow depths of intrusion.The major and trace elements data revealed a fractional crystallization origin,probably with small amounts of crustal contamination.It is interpreted that the Jabal Sabir intrusion represents an anorogenic granite pertaining to the A-type,formed in a within-plate environment under an extensional tectonic setting pertaining to rift-related granites.