As a serine hydrolase,monoacylglycerol lipase(MAGL) is principally responsible for the metabolism of 2-arachidonoylglycerol(2-AG) in the central nervous system(CNS),leading to the formation of arachidonic acid(AA).Dys...As a serine hydrolase,monoacylglycerol lipase(MAGL) is principally responsible for the metabolism of 2-arachidonoylglycerol(2-AG) in the central nervous system(CNS),leading to the formation of arachidonic acid(AA).Dysfunction of MAGL has been associated with multiple CNS disorders and symptoms,including neuroinflammation,cognitive impairment,epileptogenesis,nociception and neurodegenerative diseases.Inhibition of MAGL provides a promising therapeutic direction for the treatment of these conditions,and a MAGL positron emission tomography(PET) probe would greatly facilitate preclinical and clinical development of MAGL inhibitors.Herein,we design and synthesize a small library of fluoropyridyl-containing MAGL inhibitor candidates.Pharmacological evaluation of these candidates by activity-based protein profiling identified 14 as a lead compound,which was then radiolabeled with fluorine-18 via a facile SNAr reaction to form 2-[^(18)F]fluoropyridine scaffold.Good blood-brain barrier permeability and high in vivo specific binding was demonstrated for radioligand [^(18)F]14(also named as [^(18)F]MAGL-1902).This work may serve as a roadmap for clinical translation and further design of potent 18F-labeled MAGL PET tracers.展开更多
基金the financial support from the NIH grants (DA038000 and DA043507 to S. H. L. and DA033760 to B. F. C.)the Swiss National Science Foundation for a postdoctoral fellowship to Michael A. Schafroth (Grant No. P2EZP3_175137, Switzerland)。
文摘As a serine hydrolase,monoacylglycerol lipase(MAGL) is principally responsible for the metabolism of 2-arachidonoylglycerol(2-AG) in the central nervous system(CNS),leading to the formation of arachidonic acid(AA).Dysfunction of MAGL has been associated with multiple CNS disorders and symptoms,including neuroinflammation,cognitive impairment,epileptogenesis,nociception and neurodegenerative diseases.Inhibition of MAGL provides a promising therapeutic direction for the treatment of these conditions,and a MAGL positron emission tomography(PET) probe would greatly facilitate preclinical and clinical development of MAGL inhibitors.Herein,we design and synthesize a small library of fluoropyridyl-containing MAGL inhibitor candidates.Pharmacological evaluation of these candidates by activity-based protein profiling identified 14 as a lead compound,which was then radiolabeled with fluorine-18 via a facile SNAr reaction to form 2-[^(18)F]fluoropyridine scaffold.Good blood-brain barrier permeability and high in vivo specific binding was demonstrated for radioligand [^(18)F]14(also named as [^(18)F]MAGL-1902).This work may serve as a roadmap for clinical translation and further design of potent 18F-labeled MAGL PET tracers.