Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from res...Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.展开更多
Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani...Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.展开更多
Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has ...Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has become highly critical.As a result,various privacy-preserving data analysis technologies have emerged.Hence,we use the randomization process to reconstruct composite data attributes accurately.Also,we use privacy measures to estimate how much deception is required to guarantee privacy.There are several viable privacy protections;however,determining which one is the best is still a work in progress.This paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data results.Further-more,this paper investigates the use of arbitrary nature with perturbations in privacy preservation.According to the research,arbitrary objects(most notably random matrices)have"predicted"frequency patterns.It shows how to recover crucial information from a sample damaged by a random number using an arbi-trary lattice spectral selection strategy.Thisfiltration system's conceptual frame-work posits,and extensive practicalfindings indicate that sparse data distortions preserve relatively modest privacy protection in various situations.As a result,the research framework is efficient and effective in maintaining data privacy and security.展开更多
In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver comp...In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).展开更多
基金supported by the National Natural Science Foundation of China (62101588)the National Key Research and Development Program of China (SQ2022YFB3806200)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi (20240129)the Postdoctoral Fellowship Program of CPSF (GZC20242285)
文摘Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.
文摘Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.
文摘Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has become highly critical.As a result,various privacy-preserving data analysis technologies have emerged.Hence,we use the randomization process to reconstruct composite data attributes accurately.Also,we use privacy measures to estimate how much deception is required to guarantee privacy.There are several viable privacy protections;however,determining which one is the best is still a work in progress.This paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data results.Further-more,this paper investigates the use of arbitrary nature with perturbations in privacy preservation.According to the research,arbitrary objects(most notably random matrices)have"predicted"frequency patterns.It shows how to recover crucial information from a sample damaged by a random number using an arbi-trary lattice spectral selection strategy.Thisfiltration system's conceptual frame-work posits,and extensive practicalfindings indicate that sparse data distortions preserve relatively modest privacy protection in various situations.As a result,the research framework is efficient and effective in maintaining data privacy and security.
基金supported in part by the National Natural Science Foundation of China under Grant 92067202,Grant 62071058.
文摘In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).