Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 partic...Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 particles. The morphology, rapidly solidified structure and metastable solution expansion of the AgNi15 particles were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The results show that the AgNi15 composite particles are spherical and well-dispersed, and the mass fractions of the particles with diameters <74μm and <55 μm are 99.5% and 98%, respectively. The rapidly solidified structure of the AgNi15 particles consists of spherical nickel-richβ(Ni)-phase particles dispersed throughout a silver-richα(Ag)-phase matrix andα(Ag)-phase nanoparticles dispersed throughout largerβ(Ni)-phase particles. The silver and nickel in the AgNi15 particles form a reciprocally extended metastable solution, and the solid solubility of nickel in the silver matrix at room temperature is in the range of 0.16%?0.36% (mole fraction).展开更多
Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, ...Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.展开更多
Arc sprayed Zn and Zn15Al coatings were chosen to protect the metal ends of prestressed high-strength concrete (PHC) pipe piles against corrosion of salina soil in northern china and neutral meadow soil in northeast...Arc sprayed Zn and Zn15Al coatings were chosen to protect the metal ends of prestressed high-strength concrete (PHC) pipe piles against corrosion of salina soil in northern china and neutral meadow soil in northeast China. The corrosion behavior of the coated Q235 steel samples in two simulated soil solutions were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The experimental results show that the corrosion of the matrix Q235 steel in both simulated solutions is remarkably inhibited by Zn and Zn15Al coatings. The corrosion products on Zn and Zn15Al are thick, compact, firm and protective. The corrosion current density icorr of both Zn and Zn15Al-coated samples is decreased evidently with corrosion time, and the charge transfer resistance Rct is increased greatly. The corrosion resistance indexes of Zn and Zn15Al in simulated neutral meadow soil solution are more outstanding than those in salina soil. The corrosion resistance of Zn15Al in salina soil is slightly superior to that of Zn. When the sprayed coatings are sealed with epoxy resin, the corrosion resistance of the coatings is further enhanced markedly.展开更多
The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity. This system ...The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity. This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires). Using the scanning electron microscope ( SEM ) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic (ESA) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lameUarsplat structure and the average lamellar thickness is around 5μm.展开更多
In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full con...In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full cone jets when the dust source was covered identically by foam.It is proved that foam consumption was least when an arc jet was used.Foam production capability of an arc jet nozzle under different conditions was investigated through experiments.The results show that with the gas liquid ratio(GLR)increasing,the spray state of an arc jet nozzle presents successively water jet,foam jet and mist.Under a reasonable working condition range of foam production and a fixed GLR,foam production quantity increases at first,and then decreases with the increase of liquid supply quantity.When the inner diameter of the nozzle is 14 mm,the best GLR is 30 and the optimum liquid supply quantity is0.375 m^3/h.The results of field experiments show that the total dust and respirable dust suppression efficiency of arc jet nozzles is 85.8%and 82.6%respectively,which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the fiat nozzles.展开更多
The microstructure of a composite coating system, which was composed of an inner layer of Fe-Cr-Al and an outer layer of aluminum, was studied after it was respectively oxidized and sulfurdized at elevated temperature...The microstructure of a composite coating system, which was composed of an inner layer of Fe-Cr-Al and an outer layer of aluminum, was studied after it was respectively oxidized and sulfurdized at elevated temperatures. Apart from the Al2O3 scale formed on the surface, the microstructure of the composite coatings exposed at 900℃ in air for 4h was a three-layer structure. The first layer consisted of a solid solution of Cr and Fe in α aluminum and an intermetallic compound FeAl3 while the second layer was a single phase of the aluminide and the third layer still remained the same appearance as the original Fe-Cr-Al coating. The microstructural observation of the specimen tested at 850-900℃ at low oxygen pressure and high sulfur pressure for 576h revealed that the surface coatings of the specimen had transformed into a duplex structure containing an outer layer and a thicker aluminide layer beneath. X-ray diffraction results showed that the out layer was composed of Al2S3 and Al2O3 and that AlCrFee was the main phase composition of the aluminide layer, with a few of Al2S3 and Al2O3 accompanied.展开更多
In this study,Al–Zn and Al–Mg coatings were deposited on steel substrates by an arc thermal spray process.X-ray diffraction and scanning electron microscopy were used to characterize the deposited coatings and corro...In this study,Al–Zn and Al–Mg coatings were deposited on steel substrates by an arc thermal spray process.X-ray diffraction and scanning electron microscopy were used to characterize the deposited coatings and corrosion products.Open circuit potential(OCP),electrochemical impedance spectroscopy,and potentiodynamic studies were used to assess the corrosion characteristics of these coatings after exposure according to the Society of Automotive Engineers(SAE)J2334 solution of varying durations.This solution simulates an industrial environment and contains chloride and carbonate ions that induce corrosion of the deposited coatings.However,the Al–Mg alloy coating maintained an OCP of approximately-0.911 V versus Ag/Ag Cl in the SAE J2334 solution even after 792 h of exposure.This indicates that it protects the steel sacrificially,whereas the Al–Zn coating provides only barrier-type protection through the deposition of corrosion products.The Al–Mg coating acts as a self-healing coating and provides protection by forming Mg_6Al_2(OH)_(16)CO_3(Al–Mg layered double hydroxides).Mg_6Al_2(OH)_(16)CO_3has interlocking characteristics with a morphology of plate-like nanostructures and an ion-exchange ability that can improve the corrosion resistance properties of the coating.The presence of Zn in the corrosion products of the Al–Zn coating allows dissolution,but,at the same time,Zn_5(OH)_6(CO_3)_2and Zn_6Al_2(OH)_(16)CO_3are formed and act to reduce the corrosion rate.展开更多
For corrosion protection of carbon steel in a marine environment,cold arc thermal spray coating was applied to the surface with Al and Al-Mg alloy wires.The surface hardness of Al and Al-Mg thermal spray coatings incr...For corrosion protection of carbon steel in a marine environment,cold arc thermal spray coating was applied to the surface with Al and Al-Mg alloy wires.The surface hardness of Al and Al-Mg thermal spray coatings increased with Mg content.And the various electrochemical experiments were carried out to evaluate corrosion damage characteristics of the thermal spray coating layers.The Al and Al-Mg thermal spray coating layers presented negative potentials compared to carbon steel in corrosion potential measurements.And an anodic polarization experiment revealed a tendency of activation polarization with no passivation.Furthermore,the corrosion damage of the thermal spray coating layer in galvanostatic experiment was observed mainly at the defect area,and the Al-3Mg thermal spray coating layer presented less surface damages than others.In addition,the Al-3Mg thermal spray coating layer showed the lowest corrosion rate while having a sufficient driving voltage for cathodic corrosion protection.Therefore,it is an optimal thermal spray material for sacrificial anode.展开更多
基金Project(2009CC010)supported by the Application Basic Research Foundation of Yunnan Province,ChinaProject(51264037)supported by the National Natural Science Foundation of China
文摘Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 particles. The morphology, rapidly solidified structure and metastable solution expansion of the AgNi15 particles were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The results show that the AgNi15 composite particles are spherical and well-dispersed, and the mass fractions of the particles with diameters <74μm and <55 μm are 99.5% and 98%, respectively. The rapidly solidified structure of the AgNi15 particles consists of spherical nickel-richβ(Ni)-phase particles dispersed throughout a silver-richα(Ag)-phase matrix andα(Ag)-phase nanoparticles dispersed throughout largerβ(Ni)-phase particles. The silver and nickel in the AgNi15 particles form a reciprocally extended metastable solution, and the solid solubility of nickel in the silver matrix at room temperature is in the range of 0.16%?0.36% (mole fraction).
文摘Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.
基金Funded by the General Project of China Postdoctoral Science Foundation (20080440043)the Special Funded Project of China Postdoctoral Science Foundation (200902107)the Action Plan Project of Enterprise Scientific and Technological Envoys by Guangdong Province and Education Ministry,and the Science & Technology Ministry (2009B090600106)
文摘Arc sprayed Zn and Zn15Al coatings were chosen to protect the metal ends of prestressed high-strength concrete (PHC) pipe piles against corrosion of salina soil in northern china and neutral meadow soil in northeast China. The corrosion behavior of the coated Q235 steel samples in two simulated soil solutions were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The experimental results show that the corrosion of the matrix Q235 steel in both simulated solutions is remarkably inhibited by Zn and Zn15Al coatings. The corrosion products on Zn and Zn15Al are thick, compact, firm and protective. The corrosion current density icorr of both Zn and Zn15Al-coated samples is decreased evidently with corrosion time, and the charge transfer resistance Rct is increased greatly. The corrosion resistance indexes of Zn and Zn15Al in simulated neutral meadow soil solution are more outstanding than those in salina soil. The corrosion resistance of Zn15Al in salina soil is slightly superior to that of Zn. When the sprayed coatings are sealed with epoxy resin, the corrosion resistance of the coatings is further enhanced markedly.
文摘The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity. This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires). Using the scanning electron microscope ( SEM ) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic (ESA) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lameUarsplat structure and the average lamellar thickness is around 5μm.
基金supported by the National Natural Science Foundation of China(No.51474216)
文摘In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full cone jets when the dust source was covered identically by foam.It is proved that foam consumption was least when an arc jet was used.Foam production capability of an arc jet nozzle under different conditions was investigated through experiments.The results show that with the gas liquid ratio(GLR)increasing,the spray state of an arc jet nozzle presents successively water jet,foam jet and mist.Under a reasonable working condition range of foam production and a fixed GLR,foam production quantity increases at first,and then decreases with the increase of liquid supply quantity.When the inner diameter of the nozzle is 14 mm,the best GLR is 30 and the optimum liquid supply quantity is0.375 m^3/h.The results of field experiments show that the total dust and respirable dust suppression efficiency of arc jet nozzles is 85.8%and 82.6%respectively,which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the fiat nozzles.
文摘The microstructure of a composite coating system, which was composed of an inner layer of Fe-Cr-Al and an outer layer of aluminum, was studied after it was respectively oxidized and sulfurdized at elevated temperatures. Apart from the Al2O3 scale formed on the surface, the microstructure of the composite coatings exposed at 900℃ in air for 4h was a three-layer structure. The first layer consisted of a solid solution of Cr and Fe in α aluminum and an intermetallic compound FeAl3 while the second layer was a single phase of the aluminide and the third layer still remained the same appearance as the original Fe-Cr-Al coating. The microstructural observation of the specimen tested at 850-900℃ at low oxygen pressure and high sulfur pressure for 576h revealed that the surface coatings of the specimen had transformed into a duplex structure containing an outer layer and a thicker aluminide layer beneath. X-ray diffraction results showed that the out layer was composed of Al2S3 and Al2O3 and that AlCrFee was the main phase composition of the aluminide layer, with a few of Al2S3 and Al2O3 accompanied.
基金supported by the research fund of Hanyang University (No. HY-2014-P)
文摘In this study,Al–Zn and Al–Mg coatings were deposited on steel substrates by an arc thermal spray process.X-ray diffraction and scanning electron microscopy were used to characterize the deposited coatings and corrosion products.Open circuit potential(OCP),electrochemical impedance spectroscopy,and potentiodynamic studies were used to assess the corrosion characteristics of these coatings after exposure according to the Society of Automotive Engineers(SAE)J2334 solution of varying durations.This solution simulates an industrial environment and contains chloride and carbonate ions that induce corrosion of the deposited coatings.However,the Al–Mg alloy coating maintained an OCP of approximately-0.911 V versus Ag/Ag Cl in the SAE J2334 solution even after 792 h of exposure.This indicates that it protects the steel sacrificially,whereas the Al–Zn coating provides only barrier-type protection through the deposition of corrosion products.The Al–Mg coating acts as a self-healing coating and provides protection by forming Mg_6Al_2(OH)_(16)CO_3(Al–Mg layered double hydroxides).Mg_6Al_2(OH)_(16)CO_3has interlocking characteristics with a morphology of plate-like nanostructures and an ion-exchange ability that can improve the corrosion resistance properties of the coating.The presence of Zn in the corrosion products of the Al–Zn coating allows dissolution,but,at the same time,Zn_5(OH)_6(CO_3)_2and Zn_6Al_2(OH)_(16)CO_3are formed and act to reduce the corrosion rate.
基金a part of the project titled "Construction of eco-friendly Al ship with painting,and maintenance/repairment free," funded by the Ministry of Oceans and Fisheries,Korea
文摘For corrosion protection of carbon steel in a marine environment,cold arc thermal spray coating was applied to the surface with Al and Al-Mg alloy wires.The surface hardness of Al and Al-Mg thermal spray coatings increased with Mg content.And the various electrochemical experiments were carried out to evaluate corrosion damage characteristics of the thermal spray coating layers.The Al and Al-Mg thermal spray coating layers presented negative potentials compared to carbon steel in corrosion potential measurements.And an anodic polarization experiment revealed a tendency of activation polarization with no passivation.Furthermore,the corrosion damage of the thermal spray coating layer in galvanostatic experiment was observed mainly at the defect area,and the Al-3Mg thermal spray coating layer presented less surface damages than others.In addition,the Al-3Mg thermal spray coating layer showed the lowest corrosion rate while having a sufficient driving voltage for cathodic corrosion protection.Therefore,it is an optimal thermal spray material for sacrificial anode.