This paper applies software analytics to open source code. Open-source software gives both individuals and businesses the flexibility to work with different parts of available code to modify it or incorporate it into ...This paper applies software analytics to open source code. Open-source software gives both individuals and businesses the flexibility to work with different parts of available code to modify it or incorporate it into their own project. The open source software market is growing. Major companies such as AWS, Facebook, Google, IBM, Microsoft, Netflix, SAP, Cisco, Intel, and Tesla have joined the open source software community. In this study, a sample of 40 open source applications was selected. Traditional McCabe software metrics including cyclomatic and essential complexities were examined. An analytical comparison of this set of metrics and derived metrics for high risk software was utilized as a basis for addressing risk management in the adoption and integration decisions of open source software. From this comparison, refinements were added, and contemporary concepts of design and data metrics derived from cyclomatic complexity were integrated into a classification scheme for software quality. It was found that 84% of the sample open source applications were classified as moderate low risk or low risk indicating that open source software exhibits low risk characteristics. The 40 open source applications were the base data for the model resulting in a technique which is applicable to any open source code regardless of functionality, language, or size.展开更多
Over the past decade, open-source software use has grown. Today, many companies including Google, Microsoft, Meta, RedHat, MongoDB, and Apache are major participants of open-source contributions. With the increased us...Over the past decade, open-source software use has grown. Today, many companies including Google, Microsoft, Meta, RedHat, MongoDB, and Apache are major participants of open-source contributions. With the increased use of open-source software or integration of open-source software into custom-developed software, the quality of this software component increases in importance. This study examined a sample of open-source applications from GitHub. Static software analytics were conducted, and each application was classified for its risk level. In the analyzed applications, it was found that 90% of the applications were classified as low risk or moderate low risk indicating a high level of quality for open-source applications.展开更多
文摘This paper applies software analytics to open source code. Open-source software gives both individuals and businesses the flexibility to work with different parts of available code to modify it or incorporate it into their own project. The open source software market is growing. Major companies such as AWS, Facebook, Google, IBM, Microsoft, Netflix, SAP, Cisco, Intel, and Tesla have joined the open source software community. In this study, a sample of 40 open source applications was selected. Traditional McCabe software metrics including cyclomatic and essential complexities were examined. An analytical comparison of this set of metrics and derived metrics for high risk software was utilized as a basis for addressing risk management in the adoption and integration decisions of open source software. From this comparison, refinements were added, and contemporary concepts of design and data metrics derived from cyclomatic complexity were integrated into a classification scheme for software quality. It was found that 84% of the sample open source applications were classified as moderate low risk or low risk indicating that open source software exhibits low risk characteristics. The 40 open source applications were the base data for the model resulting in a technique which is applicable to any open source code regardless of functionality, language, or size.
文摘Over the past decade, open-source software use has grown. Today, many companies including Google, Microsoft, Meta, RedHat, MongoDB, and Apache are major participants of open-source contributions. With the increased use of open-source software or integration of open-source software into custom-developed software, the quality of this software component increases in importance. This study examined a sample of open-source applications from GitHub. Static software analytics were conducted, and each application was classified for its risk level. In the analyzed applications, it was found that 90% of the applications were classified as low risk or moderate low risk indicating a high level of quality for open-source applications.