A new observable in heavy ion collision experiments was identified to be sensitive to the hexadecapole deformation of the colliding nuclei.Such deformation is difficult to measure in traditional nuclear electric trans...A new observable in heavy ion collision experiments was identified to be sensitive to the hexadecapole deformation of the colliding nuclei.Such deformation is difficult to measure in traditional nuclear electric transition measurements,as it is often overwhelmed by the nuclear quadrupole deformation.This opens the door to gain new insight into nuclear structure with experiments that were designed to study hot and dense nuclear matter.展开更多
Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that...Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.展开更多
The South Qilian belt mainly comprises an early Paleozoic arc-ophiolite complex, accretionary prism, microcontinental block, and foreland basin. These elements represent accretion-collision during Cambrian to Silurian...The South Qilian belt mainly comprises an early Paleozoic arc-ophiolite complex, accretionary prism, microcontinental block, and foreland basin. These elements represent accretion-collision during Cambrian to Silurian time in response to closure of the Proto-Tethyan Ocean in the NE of the present-day Tibet Plateau. Closure of the Proto-Tethyan Ocean between the Central Qilian block and the Oulongbuluke block and the associated collision took place from NE to SW in a zipper-like style. Sediment would have been dispersed longitudinally SW-ward with a progressive facies migration from marginal alluvial sediments toward slope deep-water and deep-sea turbidites. This migration path indicates an ocean basin that shrank toward the SW. The Balonggongga'er Formation in the western South Qilian belt represents the fill of a latest Ordovician-Silurian remnant ocean basin that separated the Oulongbuluke block from the Central Qilian block, and records Silurian closure of the Proto-Tethyan Ocean and subduction beneath the Central Qilian block. However, alluvial deposits in the Lajishan area were accumulated in a retro-foreland basin, indicating that continent-continent collision in the eastern South Qilian belt occurred at c. 450–440 Ma. These results demonstrate that the Proto-Tethyan Ocean closed diachronously during early Paleozoic time.展开更多
The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculat...The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculations of differential v_(2)based on the advanced flow extraction method of light flavor hadrons(pions,kaons,protons,andΛ)in small collision systems were extended to a wider transverse momentum(p_(T))range of up to 8 GeV/c for the first time.The string-melting version of the AMPT model provides a good description of the measured p_(T)-differential v_(2)of the mesons but exhibits a slight deviation from the baryon v_(2).In addition,we observed the features of mass ordering at low p_(T)and the approximate number-of-constituentquark(NCQ)scaling at intermediate p_(T).Moreover,we demonstrate that hadronic rescattering does not have a significant impact on v_(2)in p-Pb collisions for different centrality selections,whereas partonic scattering dominates in generating the elliptic anisotropy of the final particles.This study provides further insight into the origin of collective-like behavior in small collision systems and has referential value for future measurements of azimuthal anisotropy.展开更多
In 2021,the Belle collaboration reported the first observation of a new structure in theψ(2S)γfinal state produced in the two-photon fusion process.In the hadronic molecule picture,this new structure can be associat...In 2021,the Belle collaboration reported the first observation of a new structure in theψ(2S)γfinal state produced in the two-photon fusion process.In the hadronic molecule picture,this new structure can be associatedwith the shallow isoscalar D*D* bound state and as such is an excellent candidate for the spin-2 partner of the X(3872)with the quantum numbers J^(PC)=2^(++)conventionally named X_(2).展开更多
Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relat...Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relativistic heavy ion collisions.In this study,we investigate the relative differences in the mean multiplicityR_(<Nch>)and the secondR_(ε2)and third-order eccentricityR_(ε3)between isobar collisions using initial state Glauber models.It is found that initial fluctuations and nuclear deformations have negligible effects on R_(<Nch>)in most central collisions,while both are important for the R_(ε2)and R_(ε3),the degree of which is sensitive to the underlying nucleonic or sub-nucleonic degree of freedom.These features,compared to real data,may probe the particle production mechanism and the physics underlying nuclear structure.展开更多
The Big Bang model was first proposed in 1931 by Georges Lemaitre. Lemaitre and Hubble discovered a linear correlation between distances to galaxies and their redshifts. The correlation between redshifts and distances...The Big Bang model was first proposed in 1931 by Georges Lemaitre. Lemaitre and Hubble discovered a linear correlation between distances to galaxies and their redshifts. The correlation between redshifts and distances arises in all expanding models of universe as the cosmological redshift is commonly attributed to stretching of wavelengths of photons propagating through the expanding space. Fritz Zwicky suggested that the cosmological redshift could be caused by the interaction of propagating light photons with certain inherent features of the cosmos to lose a fraction of their energy. However, Zwicky did not provide any physical mechanism to support his tired light hypothesis. In this paper, we have developed the mechanism of producing cosmological redshift through head-on collision between light and CMB photons. The process of repeated energy loss of visual photons through n head-on collisions with CMB photons, constitutes a primary mechanism for producing the Cosmological redshift z. While this process results in steady reduction in the energy of visual photons, it also results in continuous increase in the number of photons in the CMB. After a head-on collision with a CMB photon, the incoming light photon, with reduced energy, keeps moving on its original path without any deflection or scattering in any way. After propagation through very large distances in the intergalactic space, all light photons will tend to lose bulk of their energy and fall into the invisible region of the spectrum. Thus, this mechanism of producing cosmological redshift through gradual energy depletion, also explains the Olbers’s paradox.展开更多
We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which ma...We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which matches the next-toleading-order (NLO) QCD matrix elements with the parton shower (PS) effect.The SHELL model described the in-medium evolution of nucleus–nucleus collisions using a transport approach.The theoretical results of the dijet xJin the Xe+Xe collisions exhibit more imbalanced distributions than those in the p+p collisions,consistent with recently reported ATLAS data.By utilizing the Interleaved Flavor Neutralisation,an infrared-and-collinear-safe jet flavor algorithm,to identify the flavor of the reconstructed jets,we classify dijets processes into three categories:gluon–gluon (gg),quark–gluon (qg),and quark–quark (qq),and investigated the respective medium modification patterns and fraction changes of the gg,qg,and qq components of the dijet sample in Xe+Xe collisions.It is shown that the increased fraction of qg component at a small x_(J)contributes to the imbalance of the dijet;in particular,the q_(1)g_(2)(quark-jet-leading) dijets experience more significant asymmetric energy loss than the g_(1)q_(2)(gluon-jet-leading) dijets traversing the QGP.By comparing the■of inclusive,■ dijets in Xe+Xe collisions,we observe■.Moreover,ρ_(Xe),P_(b),the ratios of the nuclear modification factors of dijets in Xe+Xe to those in Pb+Pb,were calculated,which indicates that the yield suppression of dijets in Pb+Pb is more pronounced than that in Xe+Xe owing to the larger radius of the lead nucleus.展开更多
The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated sys...The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.展开更多
The Archean North China Craton is composed of the Western Block,Eastern Block and the intervening Central Orogenic Belt.A 4-10 km wide and 85 km long tectonic mélange belt informally called the Zanhuang tectonic
Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the...Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.展开更多
The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure ...The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.展开更多
The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent y...The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.展开更多
Cross sections of electron-loss in H(1s)+ H(1s) collisions and total collisional destruction of H(2s) in H(1s) 4- H(2s) collisions are calculatted by four-body classical-trajectory Monte Caylo (CTMC) meth...Cross sections of electron-loss in H(1s)+ H(1s) collisions and total collisional destruction of H(2s) in H(1s) 4- H(2s) collisions are calculatted by four-body classical-trajectory Monte Caylo (CTMC) method and compared with previous theoretical and experimental data over the energy range of 4-100 keV. For the former a good agreement is obtained within different four-body CTMC calculations, and for the incident energy Ep 〉 10 keV, comparison with the experimental data shows a better agreement than the results calculated by the impact parameter approx- imation. For the latter, our theory predicts the correct experimental behaviour, and the discrepancies between our results and experimental ones are less than 30%. Based on the successive comparison with experiments, the cross sections for excitation to H(2p), single- and double-ionization and H- formation in H(2s)+H(2s) collisions are calculated in the energy range of 4-100 keV for the first time, and compared with those in H(1s)+H(1s) and H(1s)+U(2s) collisions.展开更多
A multi-phase transport(AMPT)model was constructed as a self-contained kinetic theory-based description of relativistic nuclear collisions as it contains four main components:the fluctuating initial condition,a parton...A multi-phase transport(AMPT)model was constructed as a self-contained kinetic theory-based description of relativistic nuclear collisions as it contains four main components:the fluctuating initial condition,a parton cascade,hadronization,and a hadron cascade.Here,we review the main developments after the first public release of the AMPT source code in 2004 and the corre-sponding publication that described the physics details of the model at that time.We also discuss possible directions for future developments of the AMPT model to better study the properties of the dense matter created in relativistic collisions of small or large systems.展开更多
The loss rate of cold atoms in a trap due to residual gas collisions differs from that in a free state after the cold atoms are released from the trap. In this paper, the loss rate in a cold rubidium-87 atom cloud was...The loss rate of cold atoms in a trap due to residual gas collisions differs from that in a free state after the cold atoms are released from the trap. In this paper, the loss rate in a cold rubidium-87 atom cloud was measured in a magneto-optical trap (MOT) and during its free flight. The residual gas pressure was analyzed by a residual gas analyzer, and the pressure distribution in a vacuum chamber was numerically calculated by the angular coefficient method. The decay factor, which describes the decay behavior of cold atoms due to residual gas collisions during a free flight, was calculated. It was found that the decay factor agrees well with theoretical predictions under various vacuum conditions.展开更多
We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibri...We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibrium systems is addressed,with emphasis on the socalled attractor solution.Moreover,recent phenomenological improvements in the hydrodynamic modeling of heavy-ion collisions with respect to the ongoing beam energy scan program,the quantitative characterization of transport coefficients in three-dimensionally expanding quark–gluon plasma,the fluid description of small colliding systems,and certain other interdisciplinary connections are discussed.展开更多
This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. Aft...This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. After the contact force law between the contacted spheres during a collision is phenomenologically formulated in terms of the compression or overlap displacement under considera- tion of an elastic-plastic loading and a plastic unloading subprocesses, the coefficient of restitution is gained by the dynamic equation of the contact process once an initial impact velocity is input. It is found that the theoretical predictions of the coefficient of restitution varying with the impact velocity are well in agreement with the existing experimental characteristics which are fitted by the explicit formula.展开更多
We report the multiplicity dependence of charged particle production for the n~±, K~±, p, , and ? mesons at |y|<1:0 in p + p collisions at s^(1/2) = 200 GeV from a PYTHIA simulation. The impact of multipl...We report the multiplicity dependence of charged particle production for the n~±, K~±, p, , and ? mesons at |y|<1:0 in p + p collisions at s^(1/2) = 200 GeV from a PYTHIA simulation. The impact of multiple parton interactions and gluon contributions is studied and found to be a possible source of the splitting of the particle yields as a function of p_T with respect to the multiplicity. No obvious particle species dependence of the splitting is observed.The multiplicity dependence of the ratios Kˉ/πˉ, K^+/π^+,/πˉ, p/π^+, and K_s^0 at mid-rapidity in p+ p collisions is found to follow a tendency similar to that in Au t Au collisions at (s_(NN))^(1/2) = 200 GeV at the Relativistic Heavy Ion Collider, indicating similar underlying initial production mechanisms despite the differences in the initial colliding systems.展开更多
The potential energy curve of the CD(X2∏) radical is obtained using the coupled-cluster singles-doublesapproximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set augme...The potential energy curve of the CD(X2∏) radical is obtained using the coupled-cluster singles-doublesapproximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set augmented with diffuse functions, aug-cc-pV5Z. The potential energy curve is fitted to the Murrell-Sorbie function, which is used to determine the spectroscopic parameters. The obtained Do, De, Re, ωe, ωeXe, αe and Be values are 3.4971 eV, 3.6261 eV, 0.11197 nm, 2097.661 cm^-1, 34.6963 cm^-1, 0.2083 cm^-1 and 7.7962 cm^-1, respectively, which conform almost perfectly to the available measurements. With the potential obtained at the UCCSD(T)/aug-cc-pV5Z level of theory, a total of 24 vibrational states have been predicted for the first time when J = 0 by solving the radial Schrodinger equation of nuclear motion. The complete vibrational levels, the classical turning points, the inertial rotation constants and centrifugal distortion constants are reproduced from the CD(X2∏) potential when J = 0, and are in excellent agreement with the available measurements. The total and the various partial-wave cross sections are calculated for the elastic collisions between the ground-state C and D atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. when the two atoms approach each other along the CD(X2∏) potential energy curve. Only one shape resonance is found in the total elastic cross sections, and the resonant energy is 8.36×10^-6 a.u. The results show that the shape of the total elastic cross section is mainly dominated by the s partial wave at very low temperatures. Because of the weak shape resonances coming from higher partial waves, most of them are passed into oblivion by the strong total elastic cross sections.展开更多
文摘A new observable in heavy ion collision experiments was identified to be sensitive to the hexadecapole deformation of the colliding nuclei.Such deformation is difficult to measure in traditional nuclear electric transition measurements,as it is often overwhelmed by the nuclear quadrupole deformation.This opens the door to gain new insight into nuclear structure with experiments that were designed to study hot and dense nuclear matter.
基金This work is supported in part by the National Key Research and Development Program of China(Nos.2022YFA1604900)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)+3 种基金the National Natural Science Foundation of China(Nos.12275053,12025501,11890710,11890714,12147101,12075061,and 12225502)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)Shanghai National Science Foundation(No.20ZR1404100)STCSM(No.23590780100).
文摘Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.
基金the National Natural Science Foundation of China(Grants 41672221,41872241)China Geological Survey(Grants DD20190006,DD2016020104)IGGCAS Open Research Foundation(SKLK201702)。
文摘The South Qilian belt mainly comprises an early Paleozoic arc-ophiolite complex, accretionary prism, microcontinental block, and foreland basin. These elements represent accretion-collision during Cambrian to Silurian time in response to closure of the Proto-Tethyan Ocean in the NE of the present-day Tibet Plateau. Closure of the Proto-Tethyan Ocean between the Central Qilian block and the Oulongbuluke block and the associated collision took place from NE to SW in a zipper-like style. Sediment would have been dispersed longitudinally SW-ward with a progressive facies migration from marginal alluvial sediments toward slope deep-water and deep-sea turbidites. This migration path indicates an ocean basin that shrank toward the SW. The Balonggongga'er Formation in the western South Qilian belt represents the fill of a latest Ordovician-Silurian remnant ocean basin that separated the Oulongbuluke block from the Central Qilian block, and records Silurian closure of the Proto-Tethyan Ocean and subduction beneath the Central Qilian block. However, alluvial deposits in the Lajishan area were accumulated in a retro-foreland basin, indicating that continent-continent collision in the eastern South Qilian belt occurred at c. 450–440 Ma. These results demonstrate that the Proto-Tethyan Ocean closed diachronously during early Paleozoic time.
基金This work was supported by the Key Laboratory of Quark and Lepton Physics(MOE)in Central China Normal University(Nos.QLPL2022P01,QLPL202106)Natural Science Foundation of Hubei Provincial Education Department(No.Q20131603)+2 种基金National key research,development program of China(No.2018YFE0104700)National Natural Science Foundation of China(No.12175085)Fundamental research funds for the Central Universities(No.CCNU220N003).
文摘The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculations of differential v_(2)based on the advanced flow extraction method of light flavor hadrons(pions,kaons,protons,andΛ)in small collision systems were extended to a wider transverse momentum(p_(T))range of up to 8 GeV/c for the first time.The string-melting version of the AMPT model provides a good description of the measured p_(T)-differential v_(2)of the mesons but exhibits a slight deviation from the baryon v_(2).In addition,we observed the features of mass ordering at low p_(T)and the approximate number-of-constituentquark(NCQ)scaling at intermediate p_(T).Moreover,we demonstrate that hadronic rescattering does not have a significant impact on v_(2)in p-Pb collisions for different centrality selections,whereas partonic scattering dominates in generating the elliptic anisotropy of the final particles.This study provides further insight into the origin of collective-like behavior in small collision systems and has referential value for future measurements of azimuthal anisotropy.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12070131001,12125507,11835015,and 12047503)the Deutsche Forschungsgemeinschaft(DFG)through the funds provided to the Sino-German Collaborative Research Center TRR110“Symmetries and the Emergence of Structure in QCD”(Project-ID 196253076)+4 种基金the Chinese Academy of Sciences(CAS)(Grant Nos.YSBR-101 and XDB34030000)the EU STRONG-2020 project under the program H2020-INFRAIA-2018-1(Grant No.824093)the Generalitat valenciana(GVA)for the project with ref.CIDEGENT/2019/015supported by the Slovenian Research Agency(research core Funding No.P1-0035)by CAS President’s International Fellowship Initiative(PIFI)(Grant No.2024PVA0004)。
文摘In 2021,the Belle collaboration reported the first observation of a new structure in theψ(2S)γfinal state produced in the two-photon fusion process.In the hadronic molecule picture,this new structure can be associatedwith the shallow isoscalar D*D* bound state and as such is an excellent candidate for the spin-2 partner of the X(3872)with the quantum numbers J^(PC)=2^(++)conventionally named X_(2).
基金the National Natural Science Foundation of China(Nos.12275082,12035006,12075085(HX))the Zhejiang Provincial Natural Science Foundation of China(No.LY21A050001(HX))the U.S.Department of Energy(No.DE-SC0012910(FW)).
文摘Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relativistic heavy ion collisions.In this study,we investigate the relative differences in the mean multiplicityR_(<Nch>)and the secondR_(ε2)and third-order eccentricityR_(ε3)between isobar collisions using initial state Glauber models.It is found that initial fluctuations and nuclear deformations have negligible effects on R_(<Nch>)in most central collisions,while both are important for the R_(ε2)and R_(ε3),the degree of which is sensitive to the underlying nucleonic or sub-nucleonic degree of freedom.These features,compared to real data,may probe the particle production mechanism and the physics underlying nuclear structure.
文摘The Big Bang model was first proposed in 1931 by Georges Lemaitre. Lemaitre and Hubble discovered a linear correlation between distances to galaxies and their redshifts. The correlation between redshifts and distances arises in all expanding models of universe as the cosmological redshift is commonly attributed to stretching of wavelengths of photons propagating through the expanding space. Fritz Zwicky suggested that the cosmological redshift could be caused by the interaction of propagating light photons with certain inherent features of the cosmos to lose a fraction of their energy. However, Zwicky did not provide any physical mechanism to support his tired light hypothesis. In this paper, we have developed the mechanism of producing cosmological redshift through head-on collision between light and CMB photons. The process of repeated energy loss of visual photons through n head-on collisions with CMB photons, constitutes a primary mechanism for producing the Cosmological redshift z. While this process results in steady reduction in the energy of visual photons, it also results in continuous increase in the number of photons in the CMB. After a head-on collision with a CMB photon, the incoming light photon, with reduced energy, keeps moving on its original path without any deflection or scattering in any way. After propagation through very large distances in the intergalactic space, all light photons will tend to lose bulk of their energy and fall into the invisible region of the spectrum. Thus, this mechanism of producing cosmological redshift through gradual energy depletion, also explains the Olbers’s paradox.
基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)National Natural Science Foundation of China with Project(Nos.11935007,12035007,12247127,and 12247132)China Postdoctoral Science Foundation supports S.Wang under project No.2021M701279.
文摘We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which matches the next-toleading-order (NLO) QCD matrix elements with the parton shower (PS) effect.The SHELL model described the in-medium evolution of nucleus–nucleus collisions using a transport approach.The theoretical results of the dijet xJin the Xe+Xe collisions exhibit more imbalanced distributions than those in the p+p collisions,consistent with recently reported ATLAS data.By utilizing the Interleaved Flavor Neutralisation,an infrared-and-collinear-safe jet flavor algorithm,to identify the flavor of the reconstructed jets,we classify dijets processes into three categories:gluon–gluon (gg),quark–gluon (qg),and quark–quark (qq),and investigated the respective medium modification patterns and fraction changes of the gg,qg,and qq components of the dijet sample in Xe+Xe collisions.It is shown that the increased fraction of qg component at a small x_(J)contributes to the imbalance of the dijet;in particular,the q_(1)g_(2)(quark-jet-leading) dijets experience more significant asymmetric energy loss than the g_(1)q_(2)(gluon-jet-leading) dijets traversing the QGP.By comparing the■of inclusive,■ dijets in Xe+Xe collisions,we observe■.Moreover,ρ_(Xe),P_(b),the ratios of the nuclear modification factors of dijets in Xe+Xe to those in Pb+Pb,were calculated,which indicates that the yield suppression of dijets in Pb+Pb is more pronounced than that in Xe+Xe owing to the larger radius of the lead nucleus.
基金This study was supported by the National Natural Science Foundation ofChina(Nos.12147106,12175072,and 11722546)the Talent Programof South China University of Technology(No.20210115).
文摘The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.
文摘The Archean North China Craton is composed of the Western Block,Eastern Block and the intervening Central Orogenic Belt.A 4-10 km wide and 85 km long tectonic mélange belt informally called the Zanhuang tectonic
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金the National Natural Science Foundation(No.U1832129)the Youth Innovation Promotion Association CAS(No.2017309).
文摘Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFA 1602500)the National Natural Science Foundation of China (Grant Nos.11934004 and 12241410).
文摘The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.
基金supported by Shanghai Natural Science Foundation(No.14ZR1403000)1000 Young Talents Program of China+2 种基金the National Natural Science Foundation of China(No.11535012)supported by China Postdoctoral Science Foundation under Grant No.2016M590312support from RIKEN-BNL Research Center
文摘The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10434100, 10574018 and 10574020.
文摘Cross sections of electron-loss in H(1s)+ H(1s) collisions and total collisional destruction of H(2s) in H(1s) 4- H(2s) collisions are calculatted by four-body classical-trajectory Monte Caylo (CTMC) method and compared with previous theoretical and experimental data over the energy range of 4-100 keV. For the former a good agreement is obtained within different four-body CTMC calculations, and for the incident energy Ep 〉 10 keV, comparison with the experimental data shows a better agreement than the results calculated by the impact parameter approx- imation. For the latter, our theory predicts the correct experimental behaviour, and the discrepancies between our results and experimental ones are less than 30%. Based on the successive comparison with experiments, the cross sections for excitation to H(2p), single- and double-ionization and H- formation in H(2s)+H(2s) collisions are calculated in the energy range of 4-100 keV for the first time, and compared with those in H(1s)+H(1s) and H(1s)+U(2s) collisions.
基金Z.-W.L.is supported in part by the National Science Foundation under Grant No.PHY-2012947L.Z.is supported in part by the National Natural Science Foundation of China under Grant No.11905188.
文摘A multi-phase transport(AMPT)model was constructed as a self-contained kinetic theory-based description of relativistic nuclear collisions as it contains four main components:the fluctuating initial condition,a parton cascade,hadronization,and a hadron cascade.Here,we review the main developments after the first public release of the AMPT source code in 2004 and the corre-sponding publication that described the physics details of the model at that time.We also discuss possible directions for future developments of the AMPT model to better study the properties of the dense matter created in relativistic collisions of small or large systems.
基金Project supported by the Ministry of Science and Technology of China(Grant No.2013YQ09094304)
文摘The loss rate of cold atoms in a trap due to residual gas collisions differs from that in a free state after the cold atoms are released from the trap. In this paper, the loss rate in a cold rubidium-87 atom cloud was measured in a magneto-optical trap (MOT) and during its free flight. The residual gas pressure was analyzed by a residual gas analyzer, and the pressure distribution in a vacuum chamber was numerically calculated by the angular coefficient method. The decay factor, which describes the decay behavior of cold atoms due to residual gas collisions during a free flight, was calculated. It was found that the decay factor agrees well with theoretical predictions under various vacuum conditions.
基金the US Department of Energy(DOE)(No.DE-SC0013460)the National Science Foundation(NSF)(No.PHY-2012922)+1 种基金the National Natural Science Foundation of China(No.11975079)the US Department of Energy,Office of Science,Office of Nuclear Physics,within the framework of the Beam Energy Scan Theory(BEST)Topical Collaboration.
文摘We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibrium systems is addressed,with emphasis on the socalled attractor solution.Moreover,recent phenomenological improvements in the hydrodynamic modeling of heavy-ion collisions with respect to the ongoing beam energy scan program,the quantitative characterization of transport coefficients in three-dimensionally expanding quark–gluon plasma,the fluid description of small colliding systems,and certain other interdisciplinary connections are discussed.
基金supported by the Innovation Team Fund of the National Natural Science Foundation of China(11121202)
文摘This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. After the contact force law between the contacted spheres during a collision is phenomenologically formulated in terms of the compression or overlap displacement under considera- tion of an elastic-plastic loading and a plastic unloading subprocesses, the coefficient of restitution is gained by the dynamic equation of the contact process once an initial impact velocity is input. It is found that the theoretical predictions of the coefficient of restitution varying with the impact velocity are well in agreement with the existing experimental characteristics which are fitted by the explicit formula.
基金supported by the Major State Basic Research Development Program in China(No.2014CB845400)the National Natural Science Foundation of China(No.11375184)+2 种基金the Youth Innovation Promotion Association Fund of CAS(No.CX2030040079)the Ministry of Science and Technology(Mo ST)of China(No.2016YFE0104800)the Science and Technological Fund of Anhui Province for Outstanding Youth(No.1808085J02)
文摘We report the multiplicity dependence of charged particle production for the n~±, K~±, p, , and ? mesons at |y|<1:0 in p + p collisions at s^(1/2) = 200 GeV from a PYTHIA simulation. The impact of multiple parton interactions and gluon contributions is studied and found to be a possible source of the splitting of the particle yields as a function of p_T with respect to the multiplicity. No obvious particle species dependence of the splitting is observed.The multiplicity dependence of the ratios Kˉ/πˉ, K^+/π^+,/πˉ, p/π^+, and K_s^0 at mid-rapidity in p+ p collisions is found to follow a tendency similar to that in Au t Au collisions at (s_(NN))^(1/2) = 200 GeV at the Relativistic Heavy Ion Collider, indicating similar underlying initial production mechanisms despite the differences in the initial colliding systems.
基金supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province,China (Grant No 2008HASTIT008)the National Natural Science Foundation of China (Grant Nos 60777012,10874064 and 10574039)
文摘The potential energy curve of the CD(X2∏) radical is obtained using the coupled-cluster singles-doublesapproximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set augmented with diffuse functions, aug-cc-pV5Z. The potential energy curve is fitted to the Murrell-Sorbie function, which is used to determine the spectroscopic parameters. The obtained Do, De, Re, ωe, ωeXe, αe and Be values are 3.4971 eV, 3.6261 eV, 0.11197 nm, 2097.661 cm^-1, 34.6963 cm^-1, 0.2083 cm^-1 and 7.7962 cm^-1, respectively, which conform almost perfectly to the available measurements. With the potential obtained at the UCCSD(T)/aug-cc-pV5Z level of theory, a total of 24 vibrational states have been predicted for the first time when J = 0 by solving the radial Schrodinger equation of nuclear motion. The complete vibrational levels, the classical turning points, the inertial rotation constants and centrifugal distortion constants are reproduced from the CD(X2∏) potential when J = 0, and are in excellent agreement with the available measurements. The total and the various partial-wave cross sections are calculated for the elastic collisions between the ground-state C and D atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. when the two atoms approach each other along the CD(X2∏) potential energy curve. Only one shape resonance is found in the total elastic cross sections, and the resonant energy is 8.36×10^-6 a.u. The results show that the shape of the total elastic cross section is mainly dominated by the s partial wave at very low temperatures. Because of the weak shape resonances coming from higher partial waves, most of them are passed into oblivion by the strong total elastic cross sections.