Developments in information technology are providing methods to improve current design practices,where uncertainties about various design elements can be simulated and studied from the design inception.Energy and ther...Developments in information technology are providing methods to improve current design practices,where uncertainties about various design elements can be simulated and studied from the design inception.Energy and thermal simulations,improved design representations and enhanced collaboration using digital media are increasingly being used.With the expanding interest in energy-efficient build-ing design,whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design strat-egies save energy and improve building performance.The purpose of this research was to investigate the potential of these programs to perform whole building energy analysis during the early stages of architectural design,and compare the results with the actual building energy performance.The research was conducted by simulating energy usage of a fully functional research laboratory building using two different simulation tools that are aimed for early schematic design.The results were compared with utility data of the building to identify the degree of close-ness with which simulation results match the actual energy usage of the build-ing.Results indicate that modeled energy data from one of the software programs was significantly higher than the measured,actual energy usage data,while the results from the second application were comparable,but did not correctly predict monthly energy loads for the building.This suggests that significant deviations may exist between modeled and actual energy consumption for buildings,and more importantly between different simulation software programs.Understanding the limitations and suitability of specific simulation programs is crucial for successful integration of performance simulations with the design process.展开更多
In a context of growing efforts to develop sustainability strategies, energy-related issues occupy central stage in the built environment. Thus, the energy performance of housings has improved radically over the past ...In a context of growing efforts to develop sustainability strategies, energy-related issues occupy central stage in the built environment. Thus, the energy performance of housings has improved radically over the past decades. Yet other types of buildings, in particular commercial centers, haven’t received the same level of interest. As a result, there is a need for effective and practical measures to decrease their energy consumption, both for heating and electricity. The objective of the paper is to demonstrate that it is possible, through coherent strategies, to integrate energy issues and bioclimatic principles into the design process of commercial centers. It analyzes the exemplary case study of Marin Commercial Center (Switzerland). The interdisciplinary approach, based on integrated design strategies, aimed at increasing the energy efficiency while keeping the cost comparable to the market cost. The main design principles include natural ventilation, nighttime cooling with energy recovery and natural lighting, as well as optimization of mechanical systems. The results of the simulations show that Marin Center attains the best energy performance observed so far among Swiss commercial centers. It also meets the Swiss Minergie standard. The paper thus questions traditional design processes and outlines the need for interdisciplinary evaluation and monitoring approaches tailored for commercial centers. Even though most crucial decisions are taken during the early stages, all phases of the process require systematic optimization strategies, especially operating stages. Recommendations include legal measures, in particular in the fields of ventilation and air-conditioning, education, professional development and technology transfer, and financial incentives for the replacement of energy intensive installations.展开更多
The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part...The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part of and widely used in the building industry. Energy conservation by building materials has become an inevitable way of sustainable development. Centering on the building industry, this paper mainly discusses in detail the energy conservation ways by ecological architecture and building materials.展开更多
Integrative approaches to architectural design+environmental technology pedagogy are essential in educating future generations to respond to impending building energy use challenges.This paper will describe new approa...Integrative approaches to architectural design+environmental technology pedagogy are essential in educating future generations to respond to impending building energy use challenges.This paper will describe new approaches to incorporating building physics and building technology in the design studio via a diverse cohort of students and faculty,with strong emphasis placed on the development of innovative architectural strategies operating at the intersection of urban demographics,house and housing design,building performance,and sustainability.The United States Department of Energy reports that our buildings account for forty percent of all energy consumed nationally.Our focus on high performance buildings at the Georgia Tech College of Architecture aims to reduce that percentage and meet the rising demand for design and building performance professionals to evaluate the environmental impact of design decisions.Continuing a twenty-five-year trajectory of research leadership,Tech students and faculty are leading the way in digital design,building simulation,engineering,and construction integration.Over the past four years,students from various schools across campus have been working together in a seminar and design studio setting to expand 21st century housing options.Changing urban demographics,sustainability targets,and alternative energy requirements are investigated through smartly researched and elegantly designed housing and public space propositions.The move from an ecologically aware architecture towards an architecture immersed in the emerging debates about carbon footprint and energy consumption is in part driven by increasing international concern over resource availability and delivery.Through reduced costs of alternative energy capture,higher efficiencies,rapid evolution of upstream technologies and applications and more robust software platforms along with growing social,political and economic debate,the definition of sustainability is evolving - moving to transform integral parts of archi-tectural practice and education from a primarily aesthetic and assembly oriented tra-jectory to a more comprehensive understanding of the relationship between design thinking and building performance.展开更多
1.INTRODUCTION The emergence of environmental problems as major social issues throughout the world has prompted sustainable development efforts in a wide range of areas,including industry,construction,and transportati...1.INTRODUCTION The emergence of environmental problems as major social issues throughout the world has prompted sustainable development efforts in a wide range of areas,including industry,construction,and transportation,followed by the execution of numerous studies and policies.The concept of sustainable development has been dealt with in earnest in the construction field since the Declaration of Interdependence for a Sustainable Future at the 18th Chicago Convention of UIA in 1993.This Declaration included tasks to be implemented with respect to green buildings,such as the recycling of resources,application of energy-efficient designs,and utilization of natural energy in addition to the application of sustainable designs.As part of green building practices,countries around the world have been implementing various green building certification standards,such as LEED,GBCC,CASBEE,and BREEAM.展开更多
Climate-responsive building design holds immense potential for enhancing comfort,energy efficiency,and environmental sustainability.However,many social,cultural,and economic obstacles might prevent the wide adoption o...Climate-responsive building design holds immense potential for enhancing comfort,energy efficiency,and environmental sustainability.However,many social,cultural,and economic obstacles might prevent the wide adoption of designing climate-adapted buildings.One of these obstacles can be removed by enabling practitioners to easily access,visualize and analyze local climate data.The CBE Clima Tool(Clima)is a free and open-source web application that offers easy access to publicly available weather files and has been created for building energy simulation and design.It provides a series of interactive visualizations of the variables contained in the EnergyPlus Weather Files and several derived ones like the UTCI or the adaptive comfort indices.It is aimed at students,educators,and practitioners in the architecture and engineering fields.Since its inception,Clima’s user base has exhibited robust growth,attracting over 25,000 unique users annually from across 70 countries.Our tool is poised to revolutionize climate-adaptive building design,transcending geographical boundaries and fostering innovation in the architecture and engineering fields.展开更多
文摘Developments in information technology are providing methods to improve current design practices,where uncertainties about various design elements can be simulated and studied from the design inception.Energy and thermal simulations,improved design representations and enhanced collaboration using digital media are increasingly being used.With the expanding interest in energy-efficient build-ing design,whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design strat-egies save energy and improve building performance.The purpose of this research was to investigate the potential of these programs to perform whole building energy analysis during the early stages of architectural design,and compare the results with the actual building energy performance.The research was conducted by simulating energy usage of a fully functional research laboratory building using two different simulation tools that are aimed for early schematic design.The results were compared with utility data of the building to identify the degree of close-ness with which simulation results match the actual energy usage of the build-ing.Results indicate that modeled energy data from one of the software programs was significantly higher than the measured,actual energy usage data,while the results from the second application were comparable,but did not correctly predict monthly energy loads for the building.This suggests that significant deviations may exist between modeled and actual energy consumption for buildings,and more importantly between different simulation software programs.Understanding the limitations and suitability of specific simulation programs is crucial for successful integration of performance simulations with the design process.
文摘In a context of growing efforts to develop sustainability strategies, energy-related issues occupy central stage in the built environment. Thus, the energy performance of housings has improved radically over the past decades. Yet other types of buildings, in particular commercial centers, haven’t received the same level of interest. As a result, there is a need for effective and practical measures to decrease their energy consumption, both for heating and electricity. The objective of the paper is to demonstrate that it is possible, through coherent strategies, to integrate energy issues and bioclimatic principles into the design process of commercial centers. It analyzes the exemplary case study of Marin Commercial Center (Switzerland). The interdisciplinary approach, based on integrated design strategies, aimed at increasing the energy efficiency while keeping the cost comparable to the market cost. The main design principles include natural ventilation, nighttime cooling with energy recovery and natural lighting, as well as optimization of mechanical systems. The results of the simulations show that Marin Center attains the best energy performance observed so far among Swiss commercial centers. It also meets the Swiss Minergie standard. The paper thus questions traditional design processes and outlines the need for interdisciplinary evaluation and monitoring approaches tailored for commercial centers. Even though most crucial decisions are taken during the early stages, all phases of the process require systematic optimization strategies, especially operating stages. Recommendations include legal measures, in particular in the fields of ventilation and air-conditioning, education, professional development and technology transfer, and financial incentives for the replacement of energy intensive installations.
文摘The development of society and economy in China is bringing growth to all industries. In particular, the development of China’s building industry has attracted much attention. Building materials are an important part of and widely used in the building industry. Energy conservation by building materials has become an inevitable way of sustainable development. Centering on the building industry, this paper mainly discusses in detail the energy conservation ways by ecological architecture and building materials.
文摘Integrative approaches to architectural design+environmental technology pedagogy are essential in educating future generations to respond to impending building energy use challenges.This paper will describe new approaches to incorporating building physics and building technology in the design studio via a diverse cohort of students and faculty,with strong emphasis placed on the development of innovative architectural strategies operating at the intersection of urban demographics,house and housing design,building performance,and sustainability.The United States Department of Energy reports that our buildings account for forty percent of all energy consumed nationally.Our focus on high performance buildings at the Georgia Tech College of Architecture aims to reduce that percentage and meet the rising demand for design and building performance professionals to evaluate the environmental impact of design decisions.Continuing a twenty-five-year trajectory of research leadership,Tech students and faculty are leading the way in digital design,building simulation,engineering,and construction integration.Over the past four years,students from various schools across campus have been working together in a seminar and design studio setting to expand 21st century housing options.Changing urban demographics,sustainability targets,and alternative energy requirements are investigated through smartly researched and elegantly designed housing and public space propositions.The move from an ecologically aware architecture towards an architecture immersed in the emerging debates about carbon footprint and energy consumption is in part driven by increasing international concern over resource availability and delivery.Through reduced costs of alternative energy capture,higher efficiencies,rapid evolution of upstream technologies and applications and more robust software platforms along with growing social,political and economic debate,the definition of sustainability is evolving - moving to transform integral parts of archi-tectural practice and education from a primarily aesthetic and assembly oriented tra-jectory to a more comprehensive understanding of the relationship between design thinking and building performance.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2015R1D1A3A01016292)。
文摘1.INTRODUCTION The emergence of environmental problems as major social issues throughout the world has prompted sustainable development efforts in a wide range of areas,including industry,construction,and transportation,followed by the execution of numerous studies and policies.The concept of sustainable development has been dealt with in earnest in the construction field since the Declaration of Interdependence for a Sustainable Future at the 18th Chicago Convention of UIA in 1993.This Declaration included tasks to be implemented with respect to green buildings,such as the recycling of resources,application of energy-efficient designs,and utilization of natural energy in addition to the application of sustainable designs.As part of green building practices,countries around the world have been implementing various green building certification standards,such as LEED,GBCC,CASBEE,and BREEAM.
基金We would like to acknowledge the work of the authors who contributed to the development of the CBE Clima Tool(https://github.com/Center For The Built Environment/clima/graphs/contributors).This research has been supported by the Center for the Built Environment at the University of California Berkeley and the Republic of Singapore’s National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore(BEARS)for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics(SinBerBEST)Program.
文摘Climate-responsive building design holds immense potential for enhancing comfort,energy efficiency,and environmental sustainability.However,many social,cultural,and economic obstacles might prevent the wide adoption of designing climate-adapted buildings.One of these obstacles can be removed by enabling practitioners to easily access,visualize and analyze local climate data.The CBE Clima Tool(Clima)is a free and open-source web application that offers easy access to publicly available weather files and has been created for building energy simulation and design.It provides a series of interactive visualizations of the variables contained in the EnergyPlus Weather Files and several derived ones like the UTCI or the adaptive comfort indices.It is aimed at students,educators,and practitioners in the architecture and engineering fields.Since its inception,Clima’s user base has exhibited robust growth,attracting over 25,000 unique users annually from across 70 countries.Our tool is poised to revolutionize climate-adaptive building design,transcending geographical boundaries and fostering innovation in the architecture and engineering fields.