It can be observed from looking backward that processor architecture is improved through spirally shifting from simple to complex and from complex to simple. Nowadays we are facing another shifting from complex to sim...It can be observed from looking backward that processor architecture is improved through spirally shifting from simple to complex and from complex to simple. Nowadays we are facing another shifting from complex to simple, and new innovative architecture will emerge to utilize the continuously increasing transistor budgets. The growing importance of wire delays, changing workloads, power consumption, and design/verification complexity will drive the forthcoming era of Chip Multiprocessors (CMPs). Furthermore, typical CMP projects both from industries and from academics are investigated. Through going into depths for some primary theoretical and implementation problems of CMPs, the great challenges and opportunities to future CMPs are presented and discussed. Finally, the Godson series microprocessors designed in China are introduced.展开更多
随着集成电路工艺的发展,众核处理器体系结构逐渐成为计算机体系结构设计者的研究热点。众核体系结构通过任务级的并行来提升整个处理器的性能。然而,指令级的并行性仍然是众核设计者需要认真考虑的问题。对浮点运算效率和加速比进行了...随着集成电路工艺的发展,众核处理器体系结构逐渐成为计算机体系结构设计者的研究热点。众核体系结构通过任务级的并行来提升整个处理器的性能。然而,指令级的并行性仍然是众核设计者需要认真考虑的问题。对浮点运算效率和加速比进行了形式化描述,验证了进行指令级调度的必要性。对处理器核内流水线进行详细分析,指出了指令级调度的一般性问题。提出了在众核结构上使用指令级调度和软件流水的方法。针对Splash2程序集里的LU分解算法,使用众核结构的硬件支持,在Scratched Pad Memory(SPM)上给出了调度指令的方案。在众核仿真器Godson-T上仿真了经过指令级调度后的算法,当使用64个线程处理512×512的矩阵时,程序性能达到调度前性能的4倍。展开更多
Tomasulo algorithm, a dynamic scheduling technique designed for float point unit(FPU) to exploit instruction level parallelism for single thread only is improved into T Tomasulo algorithm to support multiple parallel...Tomasulo algorithm, a dynamic scheduling technique designed for float point unit(FPU) to exploit instruction level parallelism for single thread only is improved into T Tomasulo algorithm to support multiple parallel contexts. FPUs can exploit the parallelisms both within single thread and among multiple threads, and FPUs can be used more effieiently.展开更多
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 60325205 the National High Technology Development 863 Program of China under Grants No. 2002AA110010, No. 2005AA110010 No. 2005AA119020, and the National Grand Fundamental Research 973 Program of China under Grant No. 2005CB321600.
文摘It can be observed from looking backward that processor architecture is improved through spirally shifting from simple to complex and from complex to simple. Nowadays we are facing another shifting from complex to simple, and new innovative architecture will emerge to utilize the continuously increasing transistor budgets. The growing importance of wire delays, changing workloads, power consumption, and design/verification complexity will drive the forthcoming era of Chip Multiprocessors (CMPs). Furthermore, typical CMP projects both from industries and from academics are investigated. Through going into depths for some primary theoretical and implementation problems of CMPs, the great challenges and opportunities to future CMPs are presented and discussed. Finally, the Godson series microprocessors designed in China are introduced.
文摘随着集成电路工艺的发展,众核处理器体系结构逐渐成为计算机体系结构设计者的研究热点。众核体系结构通过任务级的并行来提升整个处理器的性能。然而,指令级的并行性仍然是众核设计者需要认真考虑的问题。对浮点运算效率和加速比进行了形式化描述,验证了进行指令级调度的必要性。对处理器核内流水线进行详细分析,指出了指令级调度的一般性问题。提出了在众核结构上使用指令级调度和软件流水的方法。针对Splash2程序集里的LU分解算法,使用众核结构的硬件支持,在Scratched Pad Memory(SPM)上给出了调度指令的方案。在众核仿真器Godson-T上仿真了经过指令级调度后的算法,当使用64个线程处理512×512的矩阵时,程序性能达到调度前性能的4倍。
文摘Tomasulo algorithm, a dynamic scheduling technique designed for float point unit(FPU) to exploit instruction level parallelism for single thread only is improved into T Tomasulo algorithm to support multiple parallel contexts. FPUs can exploit the parallelisms both within single thread and among multiple threads, and FPUs can be used more effieiently.