期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TIFAflow: Enhancing Traffic Archiving System with Flow Granularity for Forensic Analysis in Network Security 被引量:3
1
作者 Zhen Chen Linyun Ruan +2 位作者 Junwei Cao Yifan Yu Xin Jiang 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第4期406-417,共12页
The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves stora... The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves storage and analysis of network flow statistic. However, this approach loses much valuable information within the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk. Also with the advancement of distributed file system (such as Hadoop, ZFS, etc.) and open cloud computing platform (such as OpenStack, CloudStack, and Eucalyptus, etc.), it is practical to store such large volume of traffic data and fully in-depth analyse the inside communication within an acceptable latency. In this paper, based on well- known TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and querying network flows. Firstly, we enhance the traffic archiving system named TImemachine+FAstbit (TIFA) with flow granularity, i.e., supply the system with flow table and flow module. Secondly, based on real network traces, we conduct performance comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics. 展开更多
关键词 network security traffic archival forensic analysis phishing attack bitmap database hadoop distributed file system cloud computing NoSQL
原文传递
A Survey of Bitmap Index Compression Algorithms for Big Data 被引量:5
2
作者 Zhen Chen Yuhao Wen +6 位作者 Junwei Cao Wenxun Zheng Jiahui Chang Yinjun Wu Ge Ma Mourad Hakmaoui Guodong Peng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第1期100-115,共16页
With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for pac... With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s. 展开更多
关键词 Internet traffic big data traffic archival network security bitmap index bitmap compression algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部