Whereas for smaller animals the eardrums are well-characterized as excitable membranes or drums, some animals such as several archosaurs feature, as a first approximation, a rather stiff elastic shell supported by an ...Whereas for smaller animals the eardrums are well-characterized as excitable membranes or drums, some animals such as several archosaurs feature, as a first approximation, a rather stiff elastic shell supported by an elastic ring. Mathematically, the theory of plates and shells is applicable but its governing equations overly complicate the modeling. Here the notion of tympanic structure is introduced as a generalization of “ordinary” tympanic membranes so as to account for sound perception as it occurs in archosaurs, such as birds and crocodilians. A mathematical model for the tympanic structure in many archosaurs called two-spring model implements this notion. The model is exactly soluble and solutions are presented in closed form and as a series expansion. Special emphasis is put onto offering an easy-to-apply model for describing experiments and performing numerical studies. The analytic treatment is supplemented by a discussion of the applicability of the two-spring model in auditory research. An elasticity-theoretic perspective of the two-spring model is given in the Appendix.展开更多
During the early two decades of third millennium, many Mesozoic and Cenozoic biotas belong to plesiosaur, Titanosauriformes, titanosaurs, theropods, Mesoeucrocodiles, pterosaur, bird, snake, fishes, mammals, eucrocodi...During the early two decades of third millennium, many Mesozoic and Cenozoic biotas belong to plesiosaur, Titanosauriformes, titanosaurs, theropods, Mesoeucrocodiles, pterosaur, bird, snake, fishes, mammals, eucrocodiles, invertebrates and plants from Pakistan were found. Previously a few were formally published according to nomenclatural rules. Most of the Mesozoic vertebrates were formally published in August 2021, and the remaining Mesozoic and Cenozoic biotas are being formally described here.展开更多
文摘Whereas for smaller animals the eardrums are well-characterized as excitable membranes or drums, some animals such as several archosaurs feature, as a first approximation, a rather stiff elastic shell supported by an elastic ring. Mathematically, the theory of plates and shells is applicable but its governing equations overly complicate the modeling. Here the notion of tympanic structure is introduced as a generalization of “ordinary” tympanic membranes so as to account for sound perception as it occurs in archosaurs, such as birds and crocodilians. A mathematical model for the tympanic structure in many archosaurs called two-spring model implements this notion. The model is exactly soluble and solutions are presented in closed form and as a series expansion. Special emphasis is put onto offering an easy-to-apply model for describing experiments and performing numerical studies. The analytic treatment is supplemented by a discussion of the applicability of the two-spring model in auditory research. An elasticity-theoretic perspective of the two-spring model is given in the Appendix.
文摘During the early two decades of third millennium, many Mesozoic and Cenozoic biotas belong to plesiosaur, Titanosauriformes, titanosaurs, theropods, Mesoeucrocodiles, pterosaur, bird, snake, fishes, mammals, eucrocodiles, invertebrates and plants from Pakistan were found. Previously a few were formally published according to nomenclatural rules. Most of the Mesozoic vertebrates were formally published in August 2021, and the remaining Mesozoic and Cenozoic biotas are being formally described here.