期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Separation of Atmospheric Circulation Patterns Governing Regional Variability of Arctic Sea Ice in Summer 被引量:1
1
作者 Shaoyin WANG Jiping LIU +4 位作者 Xiao CHENG Richard JGREATBATCH Zixin WEI Zhuoqi CHEN Hua LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2344-2361,共18页
In recent decades,Arctic summer sea ice extent(SIE)has shown a rapid decline overlaid with large interannual variations,both of which are influenced by geopotential height anomalies over Greenland(GL-high)and the cent... In recent decades,Arctic summer sea ice extent(SIE)has shown a rapid decline overlaid with large interannual variations,both of which are influenced by geopotential height anomalies over Greenland(GL-high)and the central Arctic(CA-high).In this study,SIE along coastal Siberia(Sib-SIE)and Alaska(Ala-SIE)is found to account for about 65%and 21%of the Arctic SIE interannual variability,respectively.Variability in Ala-SIE is related to the GL-high,whereas variability in Sib-SIE is related to the CA-high.A decreased Ala-SIE is associated with decreased cloud cover and increased easterly winds along the Alaskan coast,promoting ice-albedo feedback.A decreased Sib-SIE is associated with a significant increase in water vapor and downward longwave radiation(DLR)along the Siberian coast.The years 2012 and 2020 with minimum recorded ASIE are used as examples.Compared to climatology,summer 2012 is characterized by a significantly enhanced GL-high with major sea ice loss along the Alaskan coast,while summer 2020 is characterized by an enhanced CA-high with sea ice loss focused along the Siberian coast.In 2012,the lack of cloud cover along the Alaskan coast contributed to an increase in incoming solar radiation,amplifying ice-albedo feedback there;while in 2020,the opposite occurs with an increase in cloud cover along the Alaskan coast,resulting in a slight increase in sea ice there.Along the Siberian coast,increased DLR in 2020 plays a dominant role in sea ice loss,and increased cloud cover and water vapor both contribute to the increased DLR. 展开更多
关键词 arctic sea ice arctic circulation patterns shortwave and longwave radiation cloud cover water vapor
下载PDF
Numerical simulation of influence of the anomalies of theCentral-eastern Equatorial Pacific SST and Arctic seaice cover in summer on the atmospheric circulation 被引量:2
2
作者 Yang Xiuqun and Huang Shisong Department of Atmospheric Sciences, Nanjing University, Nanjing 210008, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第3期401-411,共11页
A series of numerical experiments have been conducted with a perpetual July, nine-level general circulation spectral model to determine the effect of variation of the Arctic sea ice cover extent and the joint effect o... A series of numerical experiments have been conducted with a perpetual July, nine-level general circulation spectral model to determine the effect of variation of the Arctic sea ice cover extent and the joint effect of anomalies of both the Arctic sea ice cover and the Central-eastern Equatorial Pacific sea surface temperature on the summer general circulation. Results show that the two factors,anomalously large extent of the Arctic sea ice cover and anomalously warm sea surface temperature over the Central-eastern Equatorial Pacific Ocean, play substantially the equal role in the effect on the summer general circulation, and either of them can notably induce the atmospheric anomalies. The main dynamical processes determining the effect of the Arctic sea ice and the equatorial SST anomalies are associated with two leading teleconnection patterns, i. e. the Asia North/American and Eurasian patterns observed in atmosphere. The results presented in this paper again prove that the general circulation is fundamentally motivated by the non-uniform heating between the equator and the pole on the rotating earth. 展开更多
关键词 Numerical simulation of influence of the anomalies of theCentral-eastern Equatorial Pacific SST and arctic seaice cover in summer on the atmospheric circulation SST
下载PDF
An Extreme Value Analysis of Wind Speed over the European and Siberian Parts of Arctic Region 被引量:3
3
作者 Alexander Kislov Tatyana Matveeva 《Atmospheric and Climate Sciences》 2016年第2期205-223,共19页
Multiyear observed time series of wind speed for selected points of the Arctic region (data of station network from the Kola Peninsula to the Chukotka Peninsula) are used to highlight the important peculiarities of wi... Multiyear observed time series of wind speed for selected points of the Arctic region (data of station network from the Kola Peninsula to the Chukotka Peninsula) are used to highlight the important peculiarities of wind speed extreme statistics. How largest extremes could be simulated by climate model (the INM-CM4 model data from the Historical experiment of the CMIP5) is also discussed. Extreme value analysis yielded that a volume of observed samples of wind speeds are strictly divided into two sets of variables. Statistical properties of one population are sharply different from another. Because the common statistical conditions are the sign of identity of extreme events we therefore hypothesize that two groups of extreme wind events adhere to different circulation processes. A very important message is that the procedure of selection can be realized easily based on analysis of the cumulative distribution function. The authors estimate the properties of the modelled extremes and conclude that they consist of only the samples, adhering to one group. This evidence provides a clue that atmospheric model with a coarse spatial resolution does not simulate special mechanism responsible for appearance of largest wind speed extremes. Therefore, the tasks where extreme wind is needed cannot be explicitly solved using the output of climate model. The finding that global models are unable to capture the wind extremes is already well known, but information that they are members of group with the specific statistical conditions provides new knowledge. Generally, the implemented analytical approach allows us to detect that the extreme wind speed events adhere to different statistical models. Events located above the threshold value are much more pronounced than representatives of another group (located below the threshold value) predicted by the extrapolation of law distributions in their tail. The same situation is found in different areas of science where the data referring to the same nomenclature are adhering to different statistical models. This result motivates our interest on our ability to detect, analyze, and understand such different extremes. 展开更多
关键词 Extreme Wind Speed Analysis arctic circulation Modelled Extreme Wind Speed
下载PDF
Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas 被引量:1
4
作者 刘喜迎 张学洪 +2 位作者 宇如聪 刘海龙 李薇 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2007年第2期132-138,共7页
A free-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences,... A free-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (14lst-150th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress. 展开更多
关键词 arctic Ocean circulation numerical simulation sea ice model resolution LASG Model
下载PDF
Subseasonal mode of cold and wet climate in South China during the cold season: a climatological view 被引量:2
5
作者 YU Minjie ZHU Congwen JIANG Ning 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期73-79,共7页
The authors investigate the dominant mode of climatological intraseasonal oscillation(CISO) of surface air temperature(SAT) and rainfall in China, and discuss the linkage of cold and wet climate in South China(SC) wit... The authors investigate the dominant mode of climatological intraseasonal oscillation(CISO) of surface air temperature(SAT) and rainfall in China, and discuss the linkage of cold and wet climate in South China(SC) with the Arctic circulation regime during the cold season(from November to March). Results show that a positive CISO displays a cold-dry climate in North China,whereas a cold-wet pattern prevails in SC with a quasi-30-day oscillation during the peak winter season. In SC, the intraseasonal variability of SAT plays a leading role, altering the cold-wet climate by the southward shift of a cold front. Evidence shows that the circulation regime related to the cold and wet climate in SC is mainly regulated by a pair of propagating ISO modes at the500-hPa geopotential height in the negative phase of Arctic Oscillation. It is demonstrated that the local cyclonic wave activity enhances the southward movement of the Siberian high, favoring an unstable atmosphere and resulting in the cold-wet climate over SC. Therefore, the cold-air activity acts as a precursor for subseasonal rainfall forecasting in SC. 展开更多
关键词 Climatological intraseasonal oscillation cold and wet climate South China arctic circulation impact
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部